• Title/Summary/Keyword: Maximum strength

Search Result 3,749, Processing Time 0.025 seconds

Effect on the Flow and Heat Transfer of Endwall by Installation of Cut Pin in Front of Pin-fin Array of Turbine Blade Cooling Passage (가스터빈 블레이드 핀-휜 내부 냉각 유로에 분절핀 설치에 따른 바닥면 유동 및 열전달 특성)

  • Choi, Seok Min;Kim, Su Won;Park, Hee Seung;Kim, Yong Jin;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.43-55
    • /
    • 2020
  • The effect of cutted pin in front of pin-fin array was analyzed for increasing the cooling performance of gas turbine blade. The numerical simulations were conducted to figure out the flow and thermal characteristics. The base case which is staggered pin-fin array, cut pin case 1 which has X2/Dp=1.25 cut pin and cut pin case 2 which has X3/Dp=1.75 cut pin were compared. The results showed that cut pin increases the strength of the horseshoe vortex which occurred at the leading edge of pin-fin array. Furthermore, the wake effect is reduced at the trailing edge of pin-fin array. As a result, the heat transfer distribution on the endwall increases. However, the friction factor increases owing to the installation of cut pin, but the thermal performance factor is increased maximum 23.8% in cut pin case 2. Therefore, installation of cut pin will be helpful for increasing the cooling performance of pin-fin array of gas turbine blade.

A Study on Safety and Performance Evaluation to Shaver Type Rope Cutter for Ships (선박용 Shaver Type 로프절단장치의 안전성 및 성능평가에 관한 연구)

  • Kang, Sung-Hoon;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.632-638
    • /
    • 2022
  • As Korean coastal activity is high, the incidence of accidents caused by marine waste is extensive. An accident in which marine floating waste ropes and fishing nets are wound around the propeller of a sailing ship is termed "Rope wrapped accident." To prevent such accidents, this study applied the Finite Element Method (F.E.M.) for performance evaluation of the shaver type cutter, commercialized in Korea, through a structural safety review and water tank test. The results demonstrate that all parts constituting the rope cutter were damaged before reaching 0.5s, and the safety factor of each part was found to be at least 2 based on the maximum stress generated compared to the tensile strength. In the basin test, the cutting process of the shaver type rope cutter was reviewed, and the installation angle was set for each case considering that the rope floating in the sea actually enters at various angles. Consequently, as it was successful at cutting in all the cases, it can be concluded that there will be no problem in cutting the rope regardless of the mounted angle of the cutting blade.

A laboratory pressurized vane test for evaluating rheological properties of excavated soil for EPB shield TBM: test apparatus and applicability (EPB 쉴드 TBM 굴착토의 유동학적 특성 평가를 위한 실내 가압 베인시험: 장비 개발과 적용성 평가)

  • Kwak, Junho;Lee, Hyobum;Hwang, Byeonghyun;Choi, Junhyuk;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.355-374
    • /
    • 2022
  • Soil conditioning improves the performance of EPB (earth pressure balance) shield TBMs (tunnel boring machines) by reducing shear strength, enhancing workability of the excavated soil, and supporting the tunnel face during EPB tunnelling. The mechanical and rheological behavior of the excavated muck mixed with additives should be properly evaluated to determine the optimal additive injection condition corresponding to each ground type. In this study, the laboratory pressurized vane test apparatus equipped with a vane-shaped rheometer was developed to reproduce the pressurized condition in the TBM chamber and quantitively evaluate rheological properties of the soil specimens. A series of the pressurized vane tests were performed for an artificial sand soil by changing foam injection ratio (FIR) and polymer injection ratio (PIR), which are the injection parameters of the foam and the polymer, respectively. In addition, the workability of the conditioned soil was evaluated through the slump test. The peak and yield stresses of the conditioned soil with respect to the injection parameters were evaluated through the rheogram, which was derived from the measured torque data in the pressurized vane test. As FIR increased or PIR decreased, the workability of the conditioned soil increased, and the maximum torque, peak stress, and yield stress decreased. The peak stress and yield stress of the specimen from the laboratory pressurized vane test correspond to the workability evaluated by the slump tests, which implies the applicability of the proposed test for evaluating the rheological properties of excavated soil.

Structural Behavior of RC Beams with Headed Bars using Finite Element Analysis (유한요소해석 기반 확대머리 이형철근 상세 따른 RC보의 구조성능 효과 분석)

  • Kim, Kun-Soo;Park, Ki-Tae;Park, Chang-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.40-47
    • /
    • 2021
  • In this study, the structural behavior by the details of the lap region with the headed bar was estimated through finite element analysis. To solve the finite element analysis of the anchorage region with complex contact conditions and nonlinear behavior, a quasi-static analysis technique by explicit dynamic analysis was performed. The accuracy of the finite element model was verified by comparing the experimental results with the finite element analysis results. It was confirmed that the quasi-static analysis technique well reflected the behavior of enlarged headed bar connection. As a result of performing numerical analysis using 21 finite element models with various development lengths and transverse reinforcement indexes, it was confirmed that the increase of development length and transverse reinforcement index improved the maximum strength and ductility. However, to satisfy the structural performance, it should be confirmed that both design variables(development length and transverse reinforcement index) must be enough at the design criteria. In the recently revised design standard(KDS 14 20 52 :2021), a design formula of headed bar that considers both the development length and the transverse reinforcing bar index is presented. Also the results of this study confirmed that not only the development length but also transverse reinforcing bars have a very important effect.

Effect of Loading Rate on Self-stress Sensing Capacity of the Smart UHPC (하중 속도가 Smart UHPC의 자가 응력 감지 성능에 미치는 영향)

  • Lee, Seon Yeol;Kim, Min Kyoung;Kim, Dong Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • Structural health monitoring (SHM) systems have attracted considerable interest owing to the frequent earthquakes over the last decade. Smart concrete is a technology that can analyze the state of structures based on their electro-mechanical behavior. On the other hand, most research on the self-sensing response of smart concrete generally investigated the electro-mechanical behavior of smart concrete under a static loading rate, even though the loading rate under an earthquake would be much faster than the static rate. Thus, this study evaluated the electro-mechanical behavior of smart ultra-high-performance concrete (S-UHPC) at three different loading rates (1, 4, and 8 mm/min) using a Universal Testing Machine (UTM). The stress-sensitive coefficient (SC) at the maximum compressive strength of S-UHPC was -0.140 %/MPa based on a loading rate of 1 mm/min but decreased by 42.8% and 72.7% as the loading rate was increased to 4 and 8 mm/min, respectively. Although the sensing capability of S-UHPC decreased with increased load speed due to the reduced deformation of conductive materials and increased microcrack, it was available for SHM systems for earthquake detection in structures.

Field Test for Estimation of Acting Force on the Drum Cutter Attachment (드럼커터 어태치먼트의 작용력에 대한 현장시험)

  • Soon-Wook, Choi;Chulho, Lee;Tae-Ho, Kang;Soo-Ho, Chang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.373-385
    • /
    • 2022
  • The drum cutter, which is used in the form of an attachment of a excavator, is very useful in that it can be used in connection with a excavator that can perform various tasks in the field. This study estimated the load and torque acting on the drum cutter attachment by measuring the hydraulic pressure and strain that appear during excavation on the exposed rock slope using the drum cutter installed in the excavator. Working conditions such as the operation angle between the boom and arm of the excavator were divided into eight working modes. And as a result of analyzing the variations in hydraulic pressure and action force according to the working mode, it was confirmed that the hydraulic pressure and flow rate can be driven without any problems within the range considered in the manufacturing specifications of the drum cutter. The average load and torque acting on the drum cutter were within the range of the manufacturing specifications, but the maximum load was up to four times the specification. Because sumping was not properly performed due to the high ground strength and the ground included discontinuous surfaces in some locations, no trend of load and torque was found depending on the angle between the boom and arm of the excavator. However, it is believed that this result can be used to determine the range of loads and torques that appear on the drum cutter when excavating a high-intensity rock.

A Study on the Hydraulic Stability of a Multi-Layered Porous Riverbank Revetment Using Castor Oil-Based Biopolymer (피마자유기반 바이오폴리머를 활용한 다층다공성 호안의 수리적 안정성 검토)

  • Sang-Hoon, Lee;Joongu, Kang;Hong-Kyu, Ahn
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.4
    • /
    • pp.228-236
    • /
    • 2022
  • Riverbank revetments are installed to increase the stability, while preventing scouring, and utilize the rivers; their construction is prioritized to secure dimensional safety that can withstand flooding. Existing revetment technologies employ use of rocks, gabions, and concrete. However, stone and gabions are easily erosion and destroyed by extensive flooding. Though the materials used in concrete technology possess strength and stability, the strong base adversely affects the aquatic ecosystem as components leach and remain in water for a long time. This serves as an environmental and ecological issue as vegetation does not grow on the concrete surface. This study introduces multi-layer porous riverbank revetment technology using biopolymer materials extracted from castor oil. Results obtained from this study suggest that this technology provides greater dimensional stability as compared to existing technologies. Moreover. it does not release toxic substances into the rivers. Multiple experiments conducted to review the application of this technology to diverse river environments confirm that stability is achieved at a flow velocity of 8.0 m/s and maximum tractive force of 67.25 kgf/m2 (659.05 N/m2).

Effect of Repeated Wet/Dry Cycles of Salt Solution on Flexural Performance of Steel Fiber Reinforced Concrete (반복적 염수침지가 강섬유 혼입 콘크리트의 휨성능에 미치는 영향)

  • Kim, Ji-Hyun;Choi, Yu-Jin;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.553-564
    • /
    • 2022
  • Concrete is a representative composite material that shows excellent performance in the construction field. However, it is a brittle and nonhomogeneous material and exhibits weak behavior against bending and tensile forces. To compensate for such weakens, fiber reinforcement has been utilized, and steel fiber has been recognized as one of the best material for such purpose. However, steel fiber can seriously affect the durability of concrete exposed to the marine environment due to the corrosion caused by chlorine ions. This study intended to evaluate the mechanical performance of steel fiber reinforce concrete during and after repeated wet/dry cycles in salt solution. According to the experimental results, there was no reduction in the relative dynamic modulus of concrete during the repeated wet/dry cycles in salt solution for 37 weeks. Flexural strength was not decreased after completion of repeated wet/dry cycles in salt solution. There was no sign of corrosion in steel fibers after visual observation of fractured surface. However, the flexural toughness was decreased, and this is because about half of the concrete specimen showed failure before reaching the maximum displacement of 3 mm. Although repeated wet/dry cycles in salt solution did not cause cracks in concrete through corrosion of steel fibers, specific attention is required because it can reduce flexural toughness of steel fiber reinforced concrete.

Effects of Mulching Materials on Physical Properties of Soil and Grain Yield of Sesame (멀칭 재료가 참깨재배토양의 생리성 및 종실수량에 미치는 영향)

  • Kim, Wook-Han;Hong, Byung-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.3
    • /
    • pp.260-269
    • /
    • 1986
  • This experiment was conducted to investigate the effect of mulching materials on the emergence rate, root dry weight and grain weight of sesame using variety Poong Nyun Ggae and also their effects on physical properties of soil, evapotranspiration and weed growth on the respective plots were studied. The effect of soil water holding capacity at mulching with polyethylene film and straw increased 5.4%, 2.8% to non-mulched plot respectively. The maximum soil temperature was raised up to 4$^{\circ}C$ by applying clear film and was dropped down to 7$^{\circ}C$ by straw. The minimum soil temperature was raised up to 2$^{\circ}C$ by clear film and was dropped down to 3$^{\circ}C$ by straw. In the early stage, the soil physical properties of clear film mulching were better than those of non mulching, and so was in emergence rate. In the late stage, soil strength was high at non mulching, and soil porosity, soil aeration and water infiltration rate were high at film and straw mulchings. Total root dry weight was great at clear film mulching, and root dry weight was concentrated mainly in the upper 10 cm of soil profile. The amount of weeds collected was the least at black film mulching. There were of little difference in evapotranspiration among treatments. The grain yield of sesame was increased to 57% by polyethylene film and 25% by straw mulching.

  • PDF

Systematic Review on the Effect of Forest Healing Activities on the Elderly (산림치유 활동이 노인에게 미치는 효과에 대한 체계적 문헌고찰)

  • Mijin Lee;Jungkee Choi;Soyeon Kim
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.93-104
    • /
    • 2023
  • Life expectancy is increasing due to the aging of the population, which is in turn exacerbating problems such as the prevalence of various geriatric diseases. This study was established to provide basic data for the expansion of forest healing activities for the elderly by systematically analyzing the literature on how such activities affect this age group. For the collection of studies, the Korean databases RISS, KISS, Korea Med, and Science On were used, while PubMed, Cochrane Central, MDPI, and Google Scholar were used to identify reports published elsewhere. To assess the quality of the methodology used in the collected studies, the risk of bias was analyzed using Cochrane's RoB2 and RoBANS. Among 1,856 reports initially identified, 21 were finally selected for analysis in this study, which were limited to research papers on forest healing activities for the elderly published between 2000 and January 2022. In this review, the subjects were those aged 60 or older, with a total of 750 participants, ranging from at least 7 to a maximum of 88 per study. The analysis showed that the most frequently performed tests in each category were on depression as a psychological indicator in 7 studies, MMSE(Mini Mental State Examination) as a cognitive indicator in 2 studies, on blood pressure as a physiological indicator in 4 studies, on melatonin as a biochemical indicator in 2 studies, and on body fat and muscle strength as physical indicators in 3 studies. Of the 21 studies, 19 used two or more test items, with psychological indicators being most commonly measured. For the future application of forest healing activities for the elderly, various forest healing programs to prevent cognitive function decline should be developed and distributed, and follow-up studies should be continuously presented to provide the basis for forest healing activities.