DOI QR코드

DOI QR Code

A Study on the Hydraulic Stability of a Multi-Layered Porous Riverbank Revetment Using Castor Oil-Based Biopolymer

피마자유기반 바이오폴리머를 활용한 다층다공성 호안의 수리적 안정성 검토

  • Sang-Hoon, Lee (SINWOO BIO BANK Co., Ltd) ;
  • Joongu, Kang (Water Resources & River Research Department, Korea Institute of Civil Engineering and Building Technology) ;
  • Hong-Kyu, Ahn (Water Resources & River Research Department, Korea Institute of Civil Engineering and Building Technology)
  • 이상훈 (에스비비 주식회사 ) ;
  • 강준구 (한국건설기술연구원 수자원하천연구본부 ) ;
  • 안홍규 (한국건설기술연구원 수자원하천연구본부 )
  • Received : 2022.11.17
  • Accepted : 2022.12.01
  • Published : 2022.12.31

Abstract

Riverbank revetments are installed to increase the stability, while preventing scouring, and utilize the rivers; their construction is prioritized to secure dimensional safety that can withstand flooding. Existing revetment technologies employ use of rocks, gabions, and concrete. However, stone and gabions are easily erosion and destroyed by extensive flooding. Though the materials used in concrete technology possess strength and stability, the strong base adversely affects the aquatic ecosystem as components leach and remain in water for a long time. This serves as an environmental and ecological issue as vegetation does not grow on the concrete surface. This study introduces multi-layer porous riverbank revetment technology using biopolymer materials extracted from castor oil. Results obtained from this study suggest that this technology provides greater dimensional stability as compared to existing technologies. Moreover. it does not release toxic substances into the rivers. Multiple experiments conducted to review the application of this technology to diverse river environments confirm that stability is achieved at a flow velocity of 8.0 m/s and maximum tractive force of 67.25 kgf/m2 (659.05 N/m2).

하천의 안정성과 이용도를 높이기 위하여 설치하는 하천 호안이 최우선으로 여기는 가치는 홍수에 견딜 수 있는 치수적인 안전성 확보이다. 이러한 구조물은 물의 하천의 안정성을 확보하면서 호안의 세굴을 막기위해 설치된다. 기존에 하천에 설치된 호안 기술은 사석, 돌망태 및 콘크리트 등으로 구성되어 있다. 하지만 사석 및 돌망태 기술은 급격한 홍수로 인해 쉽게 유실 및 파괴되는 단점을 지니고 있으며, 콘크리트 기술은 소재의 안정성은 강하지만, 물속에 오랜 시간동안 존재할 경우 수생태계에 악영향을 미치는 강염기가 약 10년간 용출되고, 콘크리트 표면에 식생이 성장하지 못하기 때문에 환경 및 생태적인 이유로 문제가 되고 있다. 이에 피마자유에서 추출된 바이오폴리머 소재를 활용하여 다층다공성 하천호안보호기술을 개발하였으며, 한국건설기술연구원 안동하천실험센터에서 실규모 하천실험을 통해 수리학적 안정성 검토결과, 유속 8.0 m/s 및 최대 허용 소류력은 67.25 kgf/m2 (659.05 N/m2)에서 수리적인 안정성을 확인하였다.

Keywords

Acknowledgement

본 연구는 국토교통과학기술진흥원 국가연구개발사업 국토교통기술사업화지원 과제인 "피마자유 기반 바이오폴리머를 활용한 하천 호안 및 하상보호 기술의 현장적용성 강화를 위한 응용기술개발" 연구사업의 연구비 지원으로 수행되었습니다 (과제번호: RS-2021-KA160822). 이에 감사드립니다.

References

  1. Ahn, H.-K. 2018. Development of Ecological River Restoration Technique with Non.Low-Toxic Materials Exclude Concrete. Korea Institute of Civil Engineering and Building Technology.
  2. Ahn, H.K., Lee, S.H., and Ji, M.K. 2017a. Development of Ecological Scour Protection Technique with Non-Toxic Materials and Examination of Field Application. International Journal of Environmental Science and Development 8: 164-167.
  3. Ahn, H.K., Lee, S.H., and Lee, I.T. 2017b. Biological Assessments on Bio-Polymer Coated with Non-Toxic Materials. International Journal of Environmental Science and Development 8: 724-727. https://doi.org/10.18178/ijesd.2017.8.10.1046
  4. ASTM. 2007. Astm D6460-07 Standard Test Method for Determination of Rolled Erosion Control Product Performance in Protectiing Eathen Channels from Stormwater-Induced Erosion.
  5. Chiew, Y.-M. 1995. Mechanics of Riprap Failure at Bridge Piers. Journal of Hydraulic Engineering 121: 635-643. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:9(635)
  6. Chiew, Y.-M. and Lim, F.-H. 2000. Failure Behavior of Riprap Layer at Bridge Piers under Live-Bed Conditions. Journal of Hydraulic Engineering 126: 43-55. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:1(43)
  7. Choi, G.-B., Ahn, S.-S., and Park, K.-B. 2017. Analysis of 2-D Hydraulic Characteristics According to the Arrangement of River Crossing Structures. J. Korea Society of Environmental Administration 24: 15-20.
  8. Hillier, S.R., Sangha, C.M., Plunkett, B.A., and Walden, P.J. 1999. Long-Term Leaching of Toxic Trace Metals from Portland Cement Concrete. Cement and Concrete Research 29: 515-521.
  9. Ji, U., Yeo Woon, K., Lee Won, M., and Kang Joon, G. 2009. An Experimental Study to Develope the Subsidence Equation for Riprap Protection around the Pier. Journal of the Korean Society of Civil Engineers B 29: 63-71.
  10. Ji, U., Yeo, W.-K., and Lee, W.M. 2008. An Experimental Study to Evaluate the Subsidence Stability of Riprap Protection without Filters. J. Korea Water Resour. Assoc 41: 445-454. https://doi.org/10.3741/JKWRA.2008.41.4.445
  11. Kim, D.-B., Kim, J.-H., and Park, J.-C. 2016. Experimental Study on the Ph of Recycled Aggregate. Journal of the Korean Recycled Construction Resources Institute 4: 62-67. https://doi.org/10.14190/JRCR.2016.4.1.062
  12. Kim, H.-S., Park, M.-H., and Kim, W. 2015. Experimental Study on the Characteristics of Flowrate for the Intake System Using the Filter Block. Journal of the Korean Society of Civil Engineers 35: 1247-1257. https://doi.org/10.12652/Ksce.2015.35.6.1247
  13. Kim, J., Choi, J., and Choi, H.S. 2019. A Study on the Improvement of Fish Habitat through Various River Restoration Techniques in the Wonju-Cheon Stream. Korea. Ecology and Resilient Infrastructure 6: 145-153. https://doi.org/10.17820/ERI.2019.6.3.145
  14. Kim, J., Kang, M.-h., and Namgung, H. 2022. Characteristics of Bird Community and Effects of Habitat Creation in Manmade Small Ecosystem, Anseong. Journal of Environmental Impact Assessment 31: 117-127.
  15. Lauchlan, C.S. and Melville, B.W. 2001. Riprap Protection at Bridge Piers. Journal of Hydraulic Engineering 127: 412-418. https://doi.org/10.1061/(asce)0733-9429(2001)127:5(412)
  16. Lee, M.H., Jung, I.W., and Bae, D.H. 2011. Korean Flood Vulnerability Assessment on Climate Change. Journal of Korea Water Resources Association 44: 653-666. https://doi.org/10.3741/JKWRA.2011.44.8.653
  17. Lee, S.-H., Ahn, H.-K., and Che, S.-K. 2019. Variation of Water Quality and Periphytic Algae in Multi-Layer and Porous Structure for River-Bed Protection Using Bio-Polymer Materials: A Case Study of Daecheong-Stream in Gimhae-Si. Ecology and Resilient Infrastructure 6: 227-235. https://doi.org/10.17820/eri.2019.6.4.227
  18. Li, X.D., Poon, C.S., Sun, H., Lo, I.M.C., and Kirk, D.W. 2001. Heavy Metal Speciation and Leaching Behaviors in Cement Based Solidified/Stabilized Waste Materials. Journal of Hazardous Materials 82: 215-230. https://doi.org/10.1016/s0304-3894(00)00360-5
  19. May, R.W.P., Ackers, J.C., Kirby, A.M., Construction Industry, R., and Information, A. 2002. Manual on Scour at Bridges and Other Hydraulic Structures. CIRIA.
  20. MOF. 2019. National Fishway Information System. Ministry of Oceans and Fisheries.
  21. MOLIT. 2016. River Construction Design Practice Tips, Chapter 3 Revetment. Ministry of Land, Infrastructure and Transport 129-149.
  22. NDMI. 2000. Study on Disaster Characteristics Analysis for Close-to-Nature River Improvement Technique. National Disaster Management Research Institute.
  23. Paik, J., Choi, S.-U., and Cho, W. 1999. Hydraulic Properties of Concrete Block of Uniform Roughness Height for Bed Protection. Journal of the Korean Society of Civil Engineers 19: 677-686.
  24. Park, C.J., Ahn, H.K., Gye, M.C., and Lee, T.H. 2015. Effects of Concrete Materials for the Stream Restoration on Bombina Orientalis Embryos. Ecology and Resilient Infrastructure 2: 147-153.
  25. Park, H.-J. and Ji, J.-H. 2010. Hydraulic Model Test on Local Scour Protecting around Bridge Piers with Ttg Blocks. J. Korean Soc. Hazard Mitig 10: 165-174.
  26. Tang, W., Mohseni, E., and Wang, Z. 2018. Development of Vegetation Concrete Technology for Slope Protection and Greening. Construction and Building Materials 179: 605-613. https://doi.org/10.1016/j.conbuildmat.2018.05.207
  27. Worman, A. 1989. Riprap Protection without Filter Layers. Journal of Hydraulic Engineering 115: 1615-1630.  https://doi.org/10.1061/(ASCE)0733-9429(1989)115:12(1615)