• Title/Summary/Keyword: Maximum stiffness

Search Result 772, Processing Time 0.03 seconds

The Properties of Kenaf/Polyester Blended Nonwovens (케나프/폴리에스테르 혼방 부직포의 특성)

  • Lee, Hye-Ja;Yoo, Hye-Ja;Han, Young-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.7
    • /
    • pp.1119-1127
    • /
    • 2007
  • Nonwovens have been widely used in various regions from the households to the industrial, agricultural and medical goods. Synthetic fibers have been used for source of nonwovens commonly because of their useful and economic properties. They are not only main factor causing environmental problems but also spend huge cost to renew the environmental disruption by them. Nonwovens must have both cost-competitiveness and environment-friendly property to be the desirable sources in 21th centuries. For meet these needs, it is suitable for the times that economical and environmentally-safe kenaf fibers would be used as raw materials of nonwovens. Kenaf and polyester fibers were blended in 4 types of ratio : 0/100, 20/80, 40/60, 60/40 were needle-punched. The nonwovens properties such as color values, surface appearance, strength, elongations, stiffness, moisture regain, water and oil absorbency, and electrification were tested. As the results, tensile and tear strengths, water and oil absorbency were maximum at 20/80 kenaf/polyester blend nonwoven, because of effecting by nonwoven structure and fiber properties. The moisture regain were increased according to kenaf were blended and the eletrification reduced in proportion to the kenaf fibers by chemical property of fiber composed nonwovens.

A study on the injection molding technology for thin wall plastic part (초정밀 박육 플라스틱 제품 성형기술에 관한 연구)

  • Heo, Young-Moo;Shin, Kwang-Ho
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.50-54
    • /
    • 2016
  • In the semiconductor industry the final products were checked for several environments before sell the products. The burning test of memory and chip was implemented in reliability for all of parts. The memory and chip were developed to high density memory and high performance chip, so circuit design was also high integrated and the test bed was needed to be thin and fine pitch socket. LGA(Land Grid Array) IC socket with thin wall thickness was designed to satisfy this requirement. The LGA IC socket plastic part was manufacture by injection molding process, it was needed accuracy, stiffness and suit resin with high flowability. In this study, injection molding process analysis was executed for 2 and 4 cavities moldings with runner, gate and sprue. The warpage analysis was also implemented for further gate removal process. Through the analyses the total deformations of the moldings were predicted within maximum 0.05mm deformation. Finally in consideration of these results, 2 and 4 cavities molds were designed and made and tested in injection molding process.

A Study on the Mechanical Properties of Hanji for Application of Automobile Fuel Filter (자동차 연료필터 적용을 위한 한지의 물리적 특성 연구)

  • Kim, Hyun-Chel;Jeon, Cheol
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.04a
    • /
    • pp.191-197
    • /
    • 2008
  • In this study, as a fuel filter for automobiles, base paper which can filtrate the polluted particles must satisfy with the standards of each vehicle. and a filter of impregnation paper made that combining the base paper with the resin. Therefore, They were wanted to found out the factors that affect base paper and impregnation paper according to content of HPZ, Mulberry pulp(MP), Laub holze bleached kraft pulp(LBKP). The most important things we wanted to find out in base paper and impregnation paper test were weight, thickness, air permeability, burst and tensile strength, maximum pore size and mean pore size, stiffness. we wanted to measure a rate of change of these condition by adjusting a rate of mixing for HPZ, MP and LBKP. Moreover, It suited for an impregnation paper mixed with a rate of mulberry pulp 20%, HPZ 40% and LBKP 40%. Used resins in this study was Phenol, Acryl, PVAc. And as every resins, sample was divided into existence and nothing of embossing. as a fuel filter for automobiles, It was appeared that the suitable condition of base paper was a rate of mixing for HPZ(40%), MP(20%) and LBKP(40%).

  • PDF

Development of a Sample Scanner for Atomic Force Microscope (원자 현미경용 샘플 스캐너의 개발)

  • Lee, Dong-Yeon;Lee, Moo-Yeon;Gweon, Dae-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.879-882
    • /
    • 2005
  • This paper shows a method for design of the nano-positioning planar scanner used in the scanning probe microscope. The planar scanner is composed of flexure guides, piezoelectric actuators and feedback sensors. In the design of flexure guides, the Castigliano's theorem was used to find the stiffness of the guide. The motion amplifying mechanism was used in the piezoelectric actuator to achieve a large travel range. We found theoretically the travel range of the total system and verified using the commercial FEM(Finite element method) program. The maximum travel range of the planar scanner is above than 140 $\mu$m. The 3 axis positioning capability was verified by the mode analysis using the FEM program. Moreover, we presented the actual AFM(Atomic Force Microscope) imaging results with up to 2Hz imaging scan rate. Experimental results show that the properties of the proposed planar scanner is well enough to be used in SPM applications like AFM.

  • PDF

A Study for the Effect of a Virtual Mass with a Low-Pass Filter on a Stability of a Haptic System (가상질량과 저주파통과필터에 의한 햅틱 시스템의 안정성 영역에 관한 연구)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.2
    • /
    • pp.25-30
    • /
    • 2017
  • This paper presents the effects of a virtual mass with a low-pass filter on the stability boundary of a virtual spring in the haptic system. In general, a haptic system consists of a haptic device, a sampler, a virtual impedance model and zero-order-hold. The virtual impedance is modeled as a virtual spring and a virtual mass. However the high-frequency noise due to the sampling time and the quantization error of sampled data may be generated when an acceleration is measured to compute the inertia force of the virtual mass. So a low-pass filter is needed to prevent the unstable behavior due to the high-frequency noise. A finite impulse response (FIR) filter is added to the measurement process of the acceleration and the effects on the haptic stability are simulated. According to the virtual mass with the FIR filter and the sampling time, the stability boundary of the virtual spring is analyzed through the simulation. The maximum available stiffness to guarantee the stable behavior is reduced, but simulation results still show that the stability boundary of the haptic system with the virtual mass is larger than that of the haptic system without the virtual mass.

Ground-born vibration at multileveled train tunnel crossing

  • Moon, Hoon-Ki;Kim, Kang-Hyun;Kim, Ho-Jong;Shin, Jong-Ho
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.367-379
    • /
    • 2020
  • In recent railway projects where the railway connects between cities, newly planned tunnels are often located close to, or beneath an existing tunnel. Many claims and petitions have voiced public concern about the vibration and noise resulting from the situation. Vibrations and noises are engineering issues as well as environmental problems, and have become more important as people have become more concerned with their the quality of life. However, it is unlikely that the effects of vibration in situations where trains simultaneously pass a multileveled tunnel crossing have been appropriately considered in the phase of planning and design. This study investigates the superposition characteristic of ground-born vibrations from a multileveled tunnel crossing. The results from model tests and numerical analysis show that the ground-born vibration can be amplified by a maximum of about 30% compared to that resulting from the existing single tunnel. Numerical parametric study has also shown that the vibration amplification effect increases as the ground stiffness, the tunnel depth, and the distance between tunnels decrease.

Experimental tests and global modeling of masonry infilled frames

  • Bergami, Alessandro Vittorio;Nuti, Camillo
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.281-303
    • /
    • 2015
  • The effects of infill panels on the response of r.c. frames subjected to seismic action are widely recognized. Numerous experimental investigations were effected and several analytical models were developed on this subject. This work, which is part of a larger project dealing with specific materials and structures commonly used in Italy, discusses experimental tests on masonry and samples of bare and infilled portals. The experimental activity includes tests on elemental materials, and 12 wall samples. Finally, three one-bay one-story reinforced concrete frames, designed according to the outdated Italian technical code D.M. 1996 without seismic details, were tested (bare and infilled) under constant vertical and cyclic lateral load. The first cracks observed on the framed walls occurred at a drift of about 0.3%, reaching its maximum capacity at a drift of 0.5% while retaining its capacity up to a drift of 0.6%. Infill contributed to both the stiffness and strength of the bare reinforced concrete frame at small drifts thus improving overall system behavior. In addition to the experimental activities, previously mentioned, the recalibration of a model proposed by Comberscue (1996) was evaluated. The accuracy of an OpenSees non linear fiber based model of the prototype tested, including a strut element was verified through a comparison with the final experimental results. This work has been partially supported by research grant DPC-ReLUIS 2014.

A Study on the Safety and Usability of University Dormitory Buildings (대학 기숙사 건물의 안전성 및 사용성 평가 연구)

  • Chae, Kyoung-Hun;Heo, Seok-Jae;Hur, Moo-Won
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.26 no.2
    • /
    • pp.3-10
    • /
    • 2019
  • This study evaluated the vibration use and safety of students living in the dormitories on the 12th and 14th floors by feeling uncomfortable. The measurement method was to measure the acceleration due to free vibration and single - person walking. The slab stiffness was then calculated, and the usability and safety were compared according to international standards. The natural frequency of the slab was 6.8 Hz. The natural frequency of a typical slab is around 15Hz. Therefore, the evaluation slab is judged as a flexible floor structure. It is considered that there is a high possibility of resonance in the middle of daily life because of low natural frequency and near harmonic component of walking vibration. As a result, the RMS acceleration level is within the tolerance range defined by ISO 10137 code, but the 13th floor exceeds the reference limit, so that a sensitive person could detect the vibration somewhat in the lying position.

Damping and frequency of twin-cables with a cross-link and a viscous damper

  • Zhou, H.J.;Yang, X.;Peng, Y.R.;Zhou, R.;Sun, L.M.;Xing, F.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.669-682
    • /
    • 2019
  • Vibration mitigation of cables or hangers is one of the crucial problems for cable supported bridges. Previous research focused on the behaviors of cable with dampers or crossties, which could help engineering community apply these mitigation devices more efficiently. However, less studies are available for hybrid applied cross-ties and dampers, especially lack of both analytical and experimental verifications. This paper studied damping and frequency of two parallel identical cables with a connection cross-tie and an attached damper. The characteristic equation of system was derived based on transfer matrix method. The complex characteristic equation was numerically solved to find the solutions. Effects of non-dimensional spring stiffness and location on the maximum cable damping, the corresponding optimum damper constant and the corresponding frequency of lower vibration mode were further addressed. System with twin small-scale cables with a cross-link and a viscous damper were tested. The damping and frequency from the test were very close to the analytical ones. The two branches of solutions: in-phase modes and the out-of-phase modes, were identified; and the two branches of solutions were different for damping and frequency behaviors.

Studying the effects of CFRP and GFRP sheets on the strengthening of self-compacting RC girders

  • Mazloom, Moosa;Mehrvand, Morteza;Pourhaji, Pardis;Savaripour, Azim
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.47-66
    • /
    • 2019
  • One method of retrofitting concrete structures is to use fiber reinforced polymers (FRP). In this research, the shear, torsional and flexural strengthening of self-compacting reinforced concrete (RC) girders are fulfilled with glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP) materials. At first, for verification, the experimental results were compared with numerical modeling results obtained from ABAQUS software version 6.10. Then the reinforcing sheets were attached to concrete girders in one and two layers. Studying numerical results obtained from ABAQUS software showed that the girders stiffness decreased with the propagations of cracks in them, and then the extra stresses were tolerated by adhesive layers and GFRP and CFRP sheets, which resulted in increasing the bearing capacity of the studied girders. In fact, shear, torsion and bending strengths of the girders increased by reinforcing girders with adding GFRP and CFRP sheets. The samples including two layers of CFRP had the maximum efficiencies that were 90, 76 and 60 percent of improvement in shear, torsion and bending strengths, respectively. It is worth noting that the bearing capacity of concrete girders with adding one layer of CFRP was slightly higher than the ones having two layers of GFRP in all circumstances; therefore, despite the lower initial cost of GFRP, using CFRP can be more economical in some conditions.