• Title/Summary/Keyword: Maximum mean normal stress

Search Result 10, Processing Time 0.025 seconds

Numerical Analysis on the Stress Behaviours Due to Geometry Effects of the Membrane Corrugation (멤브레인의 주름 형상이 응력거동에 미치는 영향에 관한 수치적 해석)

  • Kim Chung-Kyun;Lee Young-Suck;Cha Baeg-Soon;Kim Young-Gyu;Yoon In Soo;Hong Seong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.21-26
    • /
    • 1997
  • This paper presents the numerical results of six corrugation models which compute the stress behaviours and stress levels of the membrane structure under the hydrostatic pressure of cryogenic liquids and thermal loadings using a non -linear finite element analysis program. A three-dimensional analysis of various corrugation geometries was performed on the maximum mean normal stress distributions along the upper surface of the membrane sheet. Comparisons of the FEM results for various geometry models of the corrugation are presented, which shows that the corrugated configuration of the ring knot model can be effectively performed for the combined forces such as the hydrostatic pressure and thermal loading in comparison with the Technigaz type corrugation which has small comer and apex curvatures. The FEM results show that the ring knot corrugation can be used for the deepest depth, 180m of the LNG storage tank in comparison with other corrugation models.

  • PDF

The Step Stress Life Testing for the Parallel System with Censored Data (절단된 자료가 있는 병렬형 시스템의 단계적 충격수명검사)

  • Park, Hee-Chang;Lee, Suk-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.1
    • /
    • pp.15-28
    • /
    • 1995
  • We consider a step-stress life testing which is devised for a two-component parallel system with considerably long life time. To describe such a system, we use an exponential distribution as the survival function. The lift distribution is assumed between the log mean life time and the stress with the cumulative exposure model. The criterion for optimality is to minimize the sum of the variances of the maximum likelihood estimators of the mean life times of each part under the normal stress.

  • PDF

Effect of Intermediate Principal Stress on Rock Fractures

  • Chang, Chan-Dong
    • Journal of the Korean earth science society
    • /
    • v.25 no.1
    • /
    • pp.22-31
    • /
    • 2004
  • Laboratory experiments were conducted in order to find effects of the intermediate principal stress of ${\sigma}_{2}$ on rock fractures and faults. Polyaxial tests were carried out under the most generalized compressive stress conditions, in which different magnitudes of the least and intermediate principal stresses ${\sigma}_{3}$ and ${\sigma}_{2}$ were maintained constant, and the maximum stress ${\sigma}_{1}$, was increased to failure. Two crystalline rocks (Westerly granite and KTB amphibolite) exhibited similar mechanical behavior, much of which is neglected in conventional triaxial compression tests in which ${\sigma}_{2}$ = ${\sigma}_{3}$. Compressive rock failure took the form of a main shear fracture, or fault, steeply dipping in ${\sigma}_{3}$ direction with its strike aligned with ${\sigma}_{2}$ direction. Rock strength rose significantly with the magnitude of ${\sigma}_{2}$, suggesting that the commonly used Mohr-type failure criteria, which ignore the ${\sigma}_{2}$ effect, predict only the lower limit of rock strength for a given ${\sigma}_{3}$ level. The true triaxial failure criterion for each of the crystalline rocks can be expressed as the octahedral shear stress at failure as a function of the mean normal stress acting on the fault plane. It is found that the onset of dilatancy increases considerably for higher ${\sigma}_{2}$. Thus, ${\sigma}_{2}$ extends the elastic range for a given ${\sigma}_{3}$ and, hence, retards the onset of the failure process. SEM inspection of the micromechanics leading to specimen failure showed a multitude of stress-induced microcracks localized on both sides of the through-going fault. Microcracks gradually align themselves with the ${\sigma}_{1}$-${\sigma}_{2}$ plane as the magnitude of ${\sigma}_{2}$ is raised.

Simulations of the Dynamic Load in a Francis Runner based on measurements of Grid Frequency Variations

  • Ellingsen, Rakel;Storli, Pal-Tore
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.2
    • /
    • pp.102-112
    • /
    • 2015
  • In the Nordic grid, a trend observed the recent years is the increase in grid frequency variations, which means the frequency is outside the normal range (49.9-50.1 Hz) more often. Variations in the grid frequency leads to changes in the speed of rotation of all the turbines connected to the grid, since the speed of rotation is closely related to the grid frequency for synchronous generators. When the speed of rotation changes, this implies that the net torque acting on the rotating masses are changed, and the material of the turbine runners must withstand these changes in torque. Frequency variations thus leads to torque oscillations in the turbine, which become dynamical loads that the runner must be able to withstand. Several new Francis runners have recently experienced cracks in the runner blades due to fatigue, obviously due to the runner design not taking into account the actual loads on the runner. In this paper, the torque oscillations and dynamic loads due to the variations in grid frequency are simulated in a 1D MATLAB program, and measured grid frequency is used as input to the simulation program. The maximum increase and decrease in the grid frequency over a 440 seconds interval have been investigated, in addition to an extreme event where the frequency decreased far below the normal range within a few seconds. The dynamic loading originating from grid frequency variations is qualitatively found by a constructed variable $T_{stress}$, and for the simulations presented here the variations in $T_{stress}$ are found to be around 3 % of the mean value, which is a relatively small dynamic load. The important thing to remember is that these dynamic loads come in addition to all other dynamic loads, like rotor-stator interaction and draft tube surges, and should be included in the design process, if not found to be negligible.

Helicobacter pylori Infection and a P53 Codon 72 Single Nucleotide Polymorphism: a Reason for an Unexplained Asian Enigma

  • Pandey, Renu;Misra, Vatsala;Misra, Sri Prakash;Dwivedi, Manisha;Misra, Alok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9171-9176
    • /
    • 2014
  • Aim: P53, the most commonly mutated tumor suppressor gene in all types of human cancer, is involved in cell cycle arrest and control of apoptosis. Although p53 contains several polymorphic sites, the codon 72 polymorphism is by far more common. There are divergent reports but many studies suggest p53 pro/pro SNP may be associated with susceptibility to developing various cancers in different regions of the world. The present study aimed to find any correlation between H. pylori infection and progression of carcinogenesis, by studying apoptosis and the p53 gene in gastric biopsies from north Indian population. Materials and Methods: A total of 921 biopsies were collected and tested for prevalence of H. pylori by rapid urease test (RUT), imprint cytology and histology. Apoptosis was studied by the TUNEL method. Analysis of p53 gene polymorphism at codon 72 was accomplished by PCR using restriction enzyme BstU1. Observation: Out of 921 samples tested 56.7% (543) were H. pylori positive by the three techniques. The mean apoptotic index (AI) in the normal group was 2.12, while gastritis had the maximum 4.24 followed by gastric ulcer 2.28, gastropathy 2.22 and duodenal ulcer 2.08. Mean AI in cases with gastric cancer (1.72) was less than the normal group. The analysis of p53 72 SNP revealed that p53 (Arg/Arg), (Pro /Arg) variant are higher (40.59% & 33.66%) as compared to p53 pro/pro variant (25.74%) inthe healthy population. Conclusions: The North Indian population harbors Arg or Pro/Arg SNP that is capable of withstanding stress conditions; this may be the reason of low incidence of gastric disease in spite of high infection with H. pylori. There was no significant association with H. pylori infection and AI. However, there is increased apoptosis in gastritis which may occur independent of H. pylori or p53 polymorphism.

Effects of Acorn Powder on Lifespan and a Resistance to Oxidative Stress in Caenorhabditis elegans (도토리 분말이 선충의 산화성 스트레스 저항성과 수명에 미치는 효과)

  • Lee, Soon-Young;Lee, Jin-Sun;Park, Sang-Kyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.5
    • /
    • pp.670-674
    • /
    • 2013
  • The free radical theory of aging suggests that oxidative damage caused by free radicals plays a key role in normal aging. We measured the anti-oxidant activity of acorns and asked whether it can modulate the aging process in Caenorhabditis elegans. Different concentrations of acorn powder were added to culture medium, followed by the monitoring of fertility and survival under oxidative stress. The anti-oxidant activity of 500 mg/L of acorn powder exhibited significant increases in the resistance to oxidative stress in vivo. Acorn powder also significantly extended both the mean and maximum lifespan of C. elegans (the mean lifespan was increased up to 22.4%). The fertility assay indicates the lifespan extension from acorn does not accompany a reduced reproduction, which is common in long-lived mutants. These findings indicate that acorn has a strong antioxidant activity and can induce longevity without the trade-off of reduced reproduction in C. elegans.

FLUID DYNAMIC IMPLICATIONS OF THE INTERMITTENCY OF TURBULENT MOMENTUM TRANSPORT IN THE OCEANIC TURBULENT BOUNDARY LAYER (海洋 亂流境界層內 斷續性의 流體力學的 意義)

  • Chung, Jong Yul;Grosch, Chester E.
    • 한국해양학회지
    • /
    • v.18 no.2
    • /
    • pp.104-110
    • /
    • 1983
  • The Intermittent phenomena of the turbulent momentrm transports were closely examined in order to know the nature of intermittency and its fluid dynamic implications in the oceanic turbulent boundary layer. Also the connection between the observed intermittency and the bursting phenomenon was studied in detail. In this investigation, strong intermittency of turbulent momentum transports were found and the peak values of Reynolds stress (i,e., u'w') was about 408 times greater than average Reynolds stress (u',w') in the mid-layer and 270 times greater in the uppcrlayer of the turbulent boundary layer. These values are far greater than presently known maximum value, namely 30 times greater than the average Reynolds stress reported by Gordon (1974) and Heathersaw (1974). The distribution of Reynolds stress were extremely non-normal with the mean peak occurrence period of 5 minutes in the mid-layer and 1. 1 minutes in the upper layer of the turbulent boundary layer. Each teak lasted about 2 seconds in the mid-layer and 1.1 seconds in the upper layer of the turbulent boundary layer. Our dimensionless period of peak occurrence are found to be 33.3 in the mid-layer and 7.3 in the upper-layer, which are substantially larger than the often quoted values of 3.2-6.8 for the bursting period (Jackson, 1976). Some workers have interpreted that the intermittency phenomenon is the retlect of burst across their probe of the currentmeter (Gordon, 1974; Heathersaw, 1974). However, it was known that the burst can be found very near bottom boundary with smoothed bottom (i,e., friction Reynolds number$\leq$3,000) in the laboratory experiments. Through this investigation, it was found that the intermittent strength of the turbulent momentum transports does not conclusively indicate the characteristic feature of the boundary layer turbulence with a rough bottom (i,e., friction Reynolds number$\geq$10$\^$5/).

  • PDF

Fatigue Analysis for Levitation Rail of Urban Maglev System (도시형 자기부상열차 부상레일의 피로해석)

  • Kim, Kyung-Taek;Kim, Jae-Yong;Kim, Yong-Hwan;Park, Jin-Soo;Pyen, Sang-Yun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.39-45
    • /
    • 2008
  • A levitation rail is placed on the top of track structure to operate Maglev vehicles and a part of track that link up with a sleeper is applied repeated load in Maglev vehicles operation. This paper aimed to verify validity of design for levitation rail, through the fatigue analysis about load which is applied to levitation rail in Maglev vehicles operation and impact load occurring in an emergency landing. Load conditions applied design load(23kN/m) in normal operation and skid drop load(24kN/m) in vehicle drop. And boundary conditions are consider bolt fixing and welding. Through static analysis, weak point and maximum stress of levitation rail could be obtained. S-N(stress-life) method was used in oder to predict fatigue life, and Goodman relationship was applied to consider a effect of mean stress. Also damage was calculated by using Miner's. As a result of fatigue analysis, levitation rail had a fatigue life which was more than requirement ($10^6$cycle) in all analysis conditions. Assumption that $10^8{\sim}10^9$cycles is infinite life, all analysis conditions had infinite life except a case under drop load and bolt fixing($1.21{\times}10^6$).

  • PDF

Kinetic Analysis of The foot and ankle during walking (보행시 발과 족관절의 운동학적 분석)

  • Lee, Yun-Seob;Shin, Hyung-Soo
    • PNF and Movement
    • /
    • v.4 no.1
    • /
    • pp.45-50
    • /
    • 2006
  • Purpose : This study shows the movements of the ankle and the foot in walking stages, and helps to diagnose and treat the problems of the ankle and the foot. The foot in human is a mean of the transportation, body support, and shock absorber. However, the slightest changes in the anatomical position can cause a significant increase of the stress and force in the ankle and the foot. The regular compressive force in the ankle of the normal person is generated by the contraction of the gastrocnemius and popliteus muscles, and transmitted to the achilles tendon. The plantar flexion about 10 degrees occurs immediately after the heel strike, getting ready for the weight acceptance. The shear force about 80 % of the body weight is generated immediately after the heel off of the mid stance phase. In those who have a problem in the ankle, the compression force at the ankle decreased to 1/3 of the body weight, and the shear force decreased, and the compressive force was reached at their maximum level earlier than the normal people. Conclusion : Analysis of the movements at the ankle and the foot in walking phase can make the effort to diagnose and treat the ankle and foot with the problems. However, the further study is necessary.

  • PDF

Distributional Characteristics of Microcrack in Tertiary Crystalline Tuff from Northeastern Gyeongsang Basin (경상분지 북동부의 제3기 결정질 응회암에서 발달하는 미세균열의 분포특성)

  • Park, Deok-Won;Lee, Chang-Bum
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.315-336
    • /
    • 2009
  • We have studied the orientational characteristics of microcrack frequency, it's length and density in Tertiary crystalline tuff from the northeastern part of the Gyeongsang Basin. 134 sets of microcracks on horizontal surfaces of 3 rock samples from Heunghae-eup were distinguished by enlarged photomicrographs of the thin sections. The variability in patterns among microcrack length-frequency histograms for three rock samples from different altitudes were derived. The pattern of histograms changes progressively from negative exponential form to log-normal form in proportion to altitude. The distribution pattern for rock sample no.1 from lower altitude shows the broad length distribution characterized by higher mean and median, and higher standard deviation. Meanwhile, this distribution pattern corresponds with characteristics of joint length distribution in sedimentary rocks of the lower part of the Gyeongsang Supergroup. The occurrence frequency of shorter microcracks increases toward both NW and NE directions from the $N0{\sim}10^{\circ}W$, with the dominant direction of $N80{\sim}90^{\circ}W$ and $N80{\sim}90^{\circ}E$, respectively. This distribution pattern represents the relative differences in formation timing among microcrack sets and the result of the new initiation of shorter microcracks. Meanwhile, the longest microcracks within $N60{\sim}70^{\circ}W$($L_{max}$:1.18 mm) and $N0{\sim}10^{\circ}W$($L_{max}$:0.80 mm) directions are seen, but this kind of microcracks are very limited in number. Whole domain of the directional angle($\theta$)-frequency(N), length(L) and density($\rho$) chart can be divided into five sections in terms of phases of the distribution of related curves. From the distribution chart, density curve shows five distinct peaks in the WNW-ESE($N70{\sim}80^{\circ}W$), NS~NNE-SSW($N0{\sim}10^{\circ}W$, $N10{\sim}20^{\circ}E$), ENE-WSW($N50{\sim}60^{\circ}E$), and nearly EW($N80{\sim}90^{\circ}E$) directions, respectively. Especially, main directions of faults correspond with the directional angle showing high density. Consequently, these distribution patterns of density curve reflect the representative maximum principal stress orientations suggested in previous studies.