• Title/Summary/Keyword: Maximum intersection

Search Result 86, Processing Time 0.026 seconds

Efficient Sphere Partition Method for Finding the Maximum Intersection of Spherical Convex Polygons (구 볼록 다각형들의 최대 교차를 찾기 위한 효율적인 구 분할 방식)

  • 하종성
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.2
    • /
    • pp.101-110
    • /
    • 2001
  • The maximum intersection of spherical convex polygons are to find spherical regions owned by the maximum number of the polygons, which is applicable for determining the feasibility in manufacturing problems such mould design and numerical controlled machining. In this paper, an efficient method for partitioning a sphere with the polygons into faces is presented for the maximum intersection. The maximum intersection is determined by examining the ownerships of partitioned faces, which represent how many polygons contain the faces. We take the approach of edge-based partition, in which, rather than the ownerships of faces, those of their edges are manipulated as the sphere is partitioned incrementally by each of the polygons. Finally, gathering the split edges with the maximum number of ownerships as the form of discrete data, we approximately obtain the centroids of all solution faces without constructing their boundaries. Our approach is analyzed to have an efficient time complexity Ο(nv), where n and v, respectively, are the numbers of polygons and all vertices. Futhermore, it is practical from the view of implementation since it can compute numerical values robustly and deal with all degenerate cases.

  • PDF

Estimating Utilization Factor of Left Turn Lane for Through Traffic, Intersection Capacity, and Optimum Signal Timings (직진교통의 좌회전차선 이용률 추정과 교차로용량 및 최적신호등시간 산정)

  • 도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.1 no.1
    • /
    • pp.56-63
    • /
    • 1983
  • Intersection control has dual-purposes; increasing capacity and reducing delay. The primary concern of efficient intersection control under oversaturated condition as in Korea is to increase capacity. Prevailing intersection operation technique permits thru traffic to utilize left turn lane, because the intersection without left turn pocket has left turn signal interval. In this situation, it seems not to be valid to calculate capacity, delay, and signal timings by conventional methods. By critical lane technique, capacity increases as cycle length increases. However, when thru traffic utilize LT lane, the capacity varies according to LT volume, LT interval as well as cycle length, which implies that specific cycle length and LT interval exist to maximize capacity for given LT volume. The study is designed is designed to calculate utilization factors of LT lane for thru traffic and capacities, and identify signal timings to yield maximum capacity. The experimental design involved has 3 variables; 1)LT volumes at each approach(20-300 vph), 2)cycle lengths (60-220 sec), and 3)LT intervals(2.6-42 sec) for one scenario of isolated intersection crossing two 6-lanes streets. For LT volume of 50-150 vph, capacity calculated by using the utilization factor is about 25% higher than that by critical lane method. The range of optimum cycle length to yield maximum capapcity for LT volume less than 120 vph is 140-180 sec, and increases as LT volume increases. The optimum LT interval to yield maximum capacity is longer than the intrval necessary to accommodate LT volume at saturation flow rate.

  • PDF

Effects of traffic characteristics on pavement responses at the road intersection

  • Yang, Qun;Dai, Jingwang
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.531-544
    • /
    • 2013
  • Compared with pavement structures of ordinary road sections, pavement structures in the intersection are exposed to more complex traffic characteristics which may exacerbates pavement distresses such as fatigue-cracking, shoving, shear deformation and rutting. Based on a field survey about traffic characteristics in the intersection conducted in Shanghai China, a three dimensional dynamic finite-element model was developed for evaluating the mechanistic responses in the pavement structures under different traffic characteristics, namely uniform speed, acceleration and deceleration. The results from this study indicated that : (1) traffic characteristics have significant effects on the distributions of the maximum principal strain (MPS) and the maximum shear stress (MSS) at the pavement surface; (2) vehicle acceleration or deceleration substantially impact the MPS and MSS at pavement surface and could increase the magnitude of them by 20 percent to 260 percent; (3) in the vertical direction, with the increase of vehicle deceleration rate, the location of the MPS peak value and the MSS peak value changes from the sub-surface layer to the pavement surface.

Effectiveness Analysis of Transforming Many-Legs Type Intersection into Roundabout in Jeju (제주지역 다지교차로의 회전교차로 교통시스템 변환에 따른 효과분석)

  • Lee, Dong Weon;Ko, Sang Ick;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.623-636
    • /
    • 2012
  • Roundabout is an intersection that allows vehicles to pass through the intersection by circulating the circular traffic island at the center of the intersection. In this study, a comparative analysis was conducted on roundabout at five locations in order to deduce the operational result and financial effect of roundabout and signal intersection. As for the operational result, it was found that roundabout showed improvement effect in the average delay per vehicle compared to that of signal intersection by minimum of 65.6% and maximum of 91.77%. it was found that roundabout showed financial cost-saving effect in the traffic congestion cost compared to that of signal operation by minimum of 58.59% and maximum of 81.69% per year. It can be known from these analysis results that roundabout has significant operational effects under certain amount of traffic volume by allowing vehicles to pass through the intersection in a continuous way without much waiting time and stoppage from signal control.

Design of UIGRP(Urban Intersection based Geographic Routing Protocol) considering the moving direction and density of vehicles (차량 이동 방향과 밀집도를 고려한 UIGRP(Urban Intersection based Geographic Routing Protocol) 설계)

  • Lee, Byung-Kwan;Jeong, Eun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.703-712
    • /
    • 2015
  • This paper proposes the UIGRP, which can tackle the problem of the network disconnection and packet transmission delay caused by turning vehicles frequently in an urban intersection. The UIGRP was designed as follows. First, it calculates the direction of vehicles using the moving direction of vehicles and the location of a destination. Second, it makes the RSU measure the density of an urban intersection. Third, the TGF Algorithm in the UIGRP decides the data transmission paths by setting as an intermediate node, not only the vehicle that is moving in the direction where a destination node is located, but also the node that has the highest density. The TGF algorithm using a moving direction and density minimizes or removes the occurrence of local maximum problems that the existing Greedy Forwarding algorithm has. Therefore, the simulation result shows that UIGRP decreases the occurrence of local maximum problems by 3 and 1 times, and the packet transmission time by 6.12 and 2.04(ms), and increases the success rate of packet transmission by 15 and 3%, compared to the existing GPSR and GPUR.

An Implementation of an Edge-based Algorithm for Separating and Intersecting Spherical Polygons (구 볼록 다각형 들의 분리 및 교차를 위한 간선 기반 알고리즘의 구현)

  • Ha, Jong-Seong;Cheon, Eun-Hong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.9
    • /
    • pp.479-490
    • /
    • 2001
  • In this paper, we consider the method of partitioning a sphere into faces with a set of spherical convex polygons $\Gamma$=${P_1...P_n}$ for determining the maximum of minimum intersection. This problem is commonly related with five geometric problems that fin the densest hemisphere containing the maximum subset of $\Gamma$, a great circle separating $\Gamma$, a great circle bisecting $\Gamma$ and a great circle intersecting the minimum or maximum subset of $\Gamma$. In order to efficiently compute the minimum or maximum intersection of spherical polygons. we take the approach of edge-based partition, in which the ownerships of edges rather than faces are manipulated as the sphere is incrementally partitioned by each of the polygons. Finally, by gathering the unordered split edges with the maximum number of ownerships. we approximately obtain the centroids of the solution faces without constructing their boundaries. Our algorithm for finding the maximum intersection is analyzed to have an efficient time complexity O(nv) where n and v respectively, are the numbers of polygons and all vertices. Furthermore, it is practical from the view of implementation, since it computes numerical values. robustly and deals with all the degenerate cases, Using the similar approach, the boundary of a general intersection can be constructed in O(nv+LlogL) time, where : is the output-senstive number of solution edges.

  • PDF

Intersections of a polyhedral surface with parallel planes using characteristics points (특성점의 성질을 이용한 다면체 곡면과 평행한 평면들과의 교선)

  • 전차수;김영일
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.603-616
    • /
    • 1995
  • Presented in this paper is an algorithm to obtain the intersections of a polyhedral surface composed of triangle facets with a series of parallel planes for extracting machining information from the surface. The change of the topology of the intersection curves is caused by characteristic points of the surface when sectioning the surface with parallel planes. The characteristic points are internal maximum, internal minimum, internal saddle, boundary maximum, boundary minimum, boundary max-saddle, and boundary min-saddle points. The starting points of the intersects are found efficiently and robustly using the characteristic points. The characteristic points as well as the intersection contours can be used to evaluate the machining information for process planning, and to generate NC tool path in CAD/CAM system.

  • PDF

Intersections of a Polyhedral Surface with Parallel Planes (다면체 곡면과 평행한 평면들과의 교선)

  • Jeon, Cha-Soo;Kim, Young-Yil
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.493-506
    • /
    • 1995
  • Presented in this paper is an algorithm to obtain the intersections of a polyhedral surface composed of triangle facets with a series of parallel planes for extracting machining information from the surface. The change of the topology of the intersection curves is caused by characteristic points of the surface when sectioning the surface with parallel planes. The characteristic points are internal maximum, internal minimum, internal saddle, boundary maximum, boundary minimum, boundary max-saddle, and boundary min-saddle points. The starting points of the intersects are found efficiently and robustly using the characteristic points. The characteristic points as well as the intersection contours can be used to evaluate the machining information for process planning, and to generate NC tool path in CAD/CAM system.

  • PDF

교차로 방향별 차선공동이용 연구

  • 김동녕
    • Journal of Korean Society of Transportation
    • /
    • v.6 no.2
    • /
    • pp.49-56
    • /
    • 1988
  • Alternate use of lane at a signalized intersection is a quite different control of the operation of an intersection. This control introduces a new stop line and signal before the original stop line. All of the lanes between the two stop lines are used for left turn traffic or through traffic at a time. The purpose of the control is increasing the capacity of a n intersection without widening the approach width. this paper contains a study on the condition of a application, the proper distances between the two stop lines, the reasonable offsets(rear) to guarantee clearing the vehicles of previous phase, the comparison of approach capacity between the existing control and this control. The study results reveals that the offsets(rear) are rather stable showing the range(maximum value minus minimum value) of it's value does not exceed 3.6 seconds according to the field data. The approach capacity will be increased by 27%, 43%, 59%, 84% when the distances between the stop lines are 30.0m respectively. The control might have theoretical limitation to operate in practice. So an experimental application of the control at some suitable intersections prior to expanding it.

  • PDF

PLITHOGENIC VERTEX DOMINATION NUMBER

  • T. BHARATHI;S. LEO;JEBA SHERLIN MOHAN
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.625-634
    • /
    • 2024
  • The thrust of this paper is to extend the notion of Plithogenic vertex domination to the basic operations in Plithogenic product fuzzy graphs (PPFGs). When the graph is a complete PPFG, Plithogenic vertex domination numbers (PVDNs) of its Plithogenic complement and perfect Plithogenic complement are the same, since the connectivities are the same in both the graphs. Since extra edges are added to the graph in the case of perfect Plithogenic complement, the PVDN of perfect Plithogenic complement is always less than or equal to that of Plithogenic complement, when the graph under consideration is an incomplete PPFG. The maximum and minimum values of the PVDN of the intersection or the union of PPFGs depend upon the attribute values given to P-vertices, the number of attribute values and the connectivities in the corresponding PPFGs. The novelty in this study is the investigation of the variations and the relations between PVDNs in the operations of Plithogenic complement, perfect Plithogenic complement, union and intersection of PPFGs.