• 제목/요약/키워드: Maximum efficiency control

Search Result 777, Processing Time 0.029 seconds

Synthesis and Characteristics of Diphosphine-digold complexes as Light-Emitting Materials (발광 재료용 다이포스핀-다이골드 착물의 합성과 특성 연구)

  • Kim, Jun-Ho;Sohn, Byung-Chung;Ha, Yun-Kyoung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.103-107
    • /
    • 2002
  • Diphosphine dinuclear gold(I) complexes were synthesized from the reaction of bridged diphosphines and gold ions. As a bridged diphosphine, 1,2-bis(diphenylphosphino)metbane (dppm) or 1,1'-Bis(diphenylphosphino) ferrocene (dppf) was introduced. As anionic ligands, CI was first coordinated to Au, resulting in (diphosphine)$(AuCl)_{2}$. Then, the ligand, SPh, was substituted for Cl in the chloride complex to give (diphosphine)$(AuSPh)_{2}$. As a result, three digold complexes, (dppm)$(AuCl)_{2}$. (I), (dppf)$(AuCl)_{2}$. (II), and (dppf)$(AuSPh_{2}$. (III) were prepared in this study. The thermal properties were investigated at first hand to confirm that the gold complexes were in fact formed. The digold complexes were decomposed above $200^{\circ}C$ while the ligand, dppm or dppf, melts under $180^{\circ}C$ The photoluminescence (PL) spectra of the spin-coated thin films showed the maximum peak at 590, 595, and 540nm for the complex, I, II, and III, respectively. These complexes were found to give the orange color phosphorescence. Therefore, these digold complexes can be candidates for orange-red phosphorescent materials in organic electroluminescent devices (OELD). Further studies on application of the complexes as a dopant in an emitting layer are in progress in our laboratory.

Alanine and serine functionalized magnetic nano-based particles for sorption of Nd(III) and Yb(III)

  • Galhoum, Ahmed A.;Mahfouz, Mohammad G.;Atia, Asem A.;Gomaa, Nabawia A.;Abdel-Rehem, Sayed T.;Vincent, Thierry;Guibal, Eric
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Magnetic nano-based sorbents have been synthesized for the recovery of two rare earth elements (REE: Nd(III) and Yb(III)). The magnetic nano-based particles are synthesized by a one-pot hydrothermal procedure involving co-precipitation under thermal conditions of Fe(III) and Fe(II) salts in the presence of chitosan. The composite magnetic/chitosan material is crosslinked with epichlorohydrin and modified by grafting alanine and serine amine-acids. These materials are tested for the binding of Nd(III) (light REE) and Yb(III) (heavy REE) through the study of pH effect, sorption isotherms, uptake kinetics, metal desorption and sorbent recycling. Sorption isotherms are well fitted by the Langmuir equation: the maximum sorption capacities range between 9 and 18 mg REE $g^{-1}$ (at pH 5). The sorption mechanism is endothermic (positive value of ${\Delta}H^{\circ}$) and contributes to increase the randomness of the system (positive value of ${\Delta}S^{\circ}$). The fast uptake kinetics can be described by the pseudo-second order rate equation: the equilibrium is reached within 4 hours of contact. The sub-micron size of sorbent particles strongly reduces the contribution of resistance to intraparticle diffusion in the control of uptake kinetics. Metal desorption using acidified thiourea solutions allows maintaining sorption efficiency for at least four successive cycles with limited loss in sorption capacity.

The Study on the Application of RE-CAT and Effectiveness (Wake Turbulence RE-CAT 적용과 효과성에 관한 연구)

  • Choi, Sang Il;Choi, Ji Ho;Yu, Soo Jeong;Lim, Min Sung;Oh, Min Ha;Lee, Soo Jung;Kim, Hyeon Mi;Kim, Hui Yang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.3
    • /
    • pp.34-43
    • /
    • 2021
  • Wake turbulence generated by the lead aircraft has a significant impact on the following aircraft and it is has been considered a key factor to consider whenin determining the longitudinal separation between the aircraft. ICAO classifies aircraft into four wake turbulence categories based on the maximum takeoff weight and provides the longitudinal separation minima for each category. Due to richer measured data and better understanding of physical processes, it is raised that classifying aircraft with only four wake turbulence grades is imprecise and leads to over-separation in many instances. In this regards, much research on a new method of classifying Wake Turbulence Category(Re-CAT) has been done by EURO-CONTROL, FAA, and ICAO. The main purpose of this study is to conduct a comparative analysis of the existing wake turbulence separation standards with Re-CAT in terms of departure capacity and the resulting benefits of Re-CAT using the data from the Incheon International Airport. The results show that EUROCONTROL and new ICAO standards have the greater effect on reducing wake turbulence separation, compared to the FAA RE-CAT standards. It is also concluded that Re-CAT presents different results of wake turbulence separation depending on the flight characteristics of each airport.

Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping

  • Niu, Huawei;Chen, Zhengqing;Hua, Xugang;Zhang, Wei
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.727-741
    • /
    • 2018
  • To mitigate vibrations, tuned mass dampers(TMD) are widely used for long span bridges or high-rise buildings. Due to some durability concerns, such as fluid degradation, oil leakage, etc., the alternative solutions, such as the non-contacted eddy current damping (ECD), are proposed for mechanical devices in small scales. In the present study, a new eddy current damping TMD (ECD-TMD) is proposed and developed for large scale civil infrastructure applications. Starting from parametric study on finite element analysis of the ECD-TMD, the new design is enhanced via using the permanent magnets to eliminate the power need and a combination of a copper plate and a steel plate to improve the energy dissipation efficiency. Additional special design includes installation of two permanent magnets at the same side above the copper plate to easily adjust the gap as well as the damping. In a case study, the proposed ECD-TMD is demonstrated in the application of a steel arch bridge to mitigate the wind-induced vibrations of the flexible hangers. After a brief introduction of the configuration and the installation process for the damper, the mitigation effects are measured for the ambient vibration and forced vibration scenarios. The results show that the damping ratios increase to 3% for the weak axis after the installation of the ECD-TMDs and the maximum vibration amplitudes can be reduced by 60%.

Mechanical behaviour of waste powdered tiles and Portland cement treated soft clay

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Mustaffa, Zahiraniza;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.37-47
    • /
    • 2019
  • The main objective of this study is to evaluate and compare the efficiency of ordinary Portland cement (OPC) in enhancing the unconfined compressive strength of soft soil alone and soft soil mixed with recycled tiles. The recycled tiles have been used to treat soft soil in a previous research by Al-Bared et al. (2019) and the results showed significant improvement, but the improved strength value was for samples treated with low cement content (2%). Hence, OPC is added alone in this research in various proportions and together with the optimum value of recycled tiles in order to investigate the improvement in the strength. The results of the compaction tests of the soft soil treated with recycled tiles and 2, 4, and 6% OPC revealed an increment in the maximum dry density and a decrement in the optimum moisture content. The optimum value of OPC was found to be 6%, at which the strength was the highest for both samples treated with OPC alone and samples treated with OPC and 20% recycled tiles. Under similar curing time, the strength of samples treated with recycled tiles and OPC was higher than the treated soil with the same percentage of OPC alone. The stress-strain curves showed ductile plastic behaviour for the untreated soft clay and brittle behaviour for almost all treated samples with OPC alone and OPC with recycled tiles. The microstructural tests indicated the formation of new cementitious products that were responsible for the improvement of the strength, such as calcium aluminium silicate hydrate. This research promotes recycled tiles as a green stabiliser for soil stabilisation capable of reducing the amount of OPC required for ground improvement. The replacement of OPC with recycled tiles resulted in higher strength compared to the control mix and this achievement may results in reducing both OPC in soil stabilisation and the disposal of recycled tiles into landfills.

Exploration of shockwaves on polymeric membrane physical properties and performance

  • Lakshmi, D. Shanthana;Saxena, Mayank;Ekambaram, Shivakarthik;Sivaraman, Bhalamurugan
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2021
  • The Commercial polymeric membranes like Polysulfone (PSF), Polyvinylidene difluoride (PVDF) and Polyacrylonitrile (PAN) which are an integral part of water purification investigation were chosen for the shockwave (SW) exposure experiment. These membranes were prepared by blending polymer (wt. %) / DMF (solvent) followed by phase-inversion casting technique. Shockwaves are generated by using Reddy Tube lab module (Table-top Shocktube) with range of pressure (1.5, 2.5 and 5 bar). Understanding the changes in membrane before and after shock wave treatment by parameters, i.e., pure water flux (PWF), rejection (%), porosity, surface roughness (AFM), morphology (SEM) and contact angle which can significantly affect the membrane's performance. Flux values PSf membranes shows increase, 465 (pristine) to 524 (1.5wt%) LMH at 50 Psi pressure and similar enhancement was observed at 100Psi (625 to 696 LMH). Porosity also shows improvement from 73.6% to 76.84% for 15wt% PSf membranes. It was observed that membranes made of polymers such as PAN and PSF (of high w/w %) exhibits some resistance against shockwaves impact and are stable compared to other membranes. Shockwave pressure of up to 1.5 bar was sufficient enough to change properties which are crucial for performance. Membranes exposed to a maximum pressure of 5 bar completely scratched the surface and with minimum pressure of 1.5bar is optimum enough to improve the water flux and other parameters. Initial results proved that SW may be suitable alternative route to minimize/control membrane fouling and improve efficiency.

Mineralogical Characteristics and Fundamental Study of Flotation for Molybdenum Ore (몰리브덴광의 광물학적 특성 및 부선 기초연구)

  • Oyunbileg Purev;Hyun Soo Kim;Chul-Hyun Park
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.73-80
    • /
    • 2022
  • This study investigated the mineralogical characteristics and basic flotation properties of domestic molybdenum ores. The source mineral of molybdenum was identified as molybdenite, and the main gangue minerals in the raw ore were silicate minerals. Copper, lead, and zinc were also found in trace amounts. Based on the results of basic flotation properties, molybdenite's zeta potential showed negative charges in all pH ranges. The contact angle of molybdenite increased with pH, reaching a maximum of 74° at pH 9. In optimal conditions, the grade and recovery of the concentrate by unit flotation were MoS2 82.4% and 92.04%, respectively. Further investigation of the impurities in the concentrate revealed a sulfide mineral with surface characteristics similar to molybdenite and silicate minerals combined with molybdenite, which may degrade the quality of the concentrate. To improve the concentrate quality, we intend to control silicate minerals through regrinding and liberation and use column flotation to improve fine particle separation efficiency.

Towards a better understanding of detection properties of different types of plastic scintillator crystals using physical detector and MCNPX code

  • Ayberk Yilmaz;Hatice Yilmaz Alan;Lidya Amon Susam;Baki Akkus;Ghada ALMisned;Taha Batuhan Ilhan;H.O. Tekin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4671-4678
    • /
    • 2022
  • The purpose of this comprehensive research is to observe the impact of scintillator crystal type on entire detection process. For this aim, MCNPX (version 2.6.0) is used for designing of a physical plastic scintillation detector available in our laboratory. The modelled detector structure is validated using previous studies in the literature. Next, different types of plastic scintillation crystals were assessed in the same geometry. Several fundamental detector properties are determined for six different plastic scintillation crystals. Additionally, the deposited energy quantities were computed using the MCNPX code. Although six scintillation crystals have comparable compositions, the findings clearly indicate that the crystal composed of PVT 80% + PPO 20% has superior counting and detecting characteristics when compared to the other crystals investigated. Moreover, it is observed that the highest deposited energy amount, which is a result of the highest collision number in the crystal volume, corresponds to a PVT 80% + PPO 20% crystal. Despite the fact that plastic detector crystals have similar chemical structures, this study found that performing advanced Monte Carlo simulations on the detection discrepancies within the structures can aid in the development of the most effective spectroscopy procedures by ensuring maximum efficiency prior to and during use.

Mineralogical studies and extraction of some valuable elements from sulfide deposits of Abu Gurdi area, South Eastern Desert, Egypt

  • Ibrahim A. Salem;Gaafar A. El Bahariya;Bothina T. El Dosuky;Eman F. Refaey;Ahmed H. Ibrahim;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.47-62
    • /
    • 2024
  • Abu Gurdi area is located in the South-eastern Desert of Egypt which considered as volcanic massive sulfide deposits (VMS). The present work aims at investigating the ore mineralogy of Abu Gurdi region in addition to the effectiveness of the hydrometallurgical route for processing these ores using alkaline leaching for the extraction of Zn, Cu, and Pb in the presence of hydrogen peroxide, has been investigated. The factors affecting the efficiency of the alkaline leaching of the used ore including the reagent composition, reagent concentration, leaching temperature, leaching time, and Solid /Liquid ratio, have been investigated. It was noted that the sulfide mineralization consists mainly of chalcopyrite, sphalerite, pyrite, galena and bornite. Gold is detected as rare, disseminated crystals within the gangue minerals. Under supergene conditions, secondary copper minerals (covellite, malachite, chrysocolla and atacamite) were formed. The maximum dissolution efficiencies of Cu, Zn, and Pb at the optimum leaching conditions i.e., 250 g/L NaCO3 - NaHCO3 alkali concentration, for 3 hr., at 250 ℃, and 1/5 Solid/liquid (S/L) ratio, were 99.48 %, 96.70 % and 99.11 %, respectively. An apparent activation energy for Zn, Cu and Pb dissolution were 21.599, 21.779 and 23.761 kJ.mol-1, respectively, which were between those of a typical diffusion-controlled process and a chemical reaction-controlled process. Hence, the diffusion of the solid product layer contributed more than the chemical reaction to control the rate of the leaching process. High pure Cu(OH)2, Pb(OH)2, and ZnCl2 were obtained from the finally obtained leach liquor at the optimum leaching conditions by precipitation at different pH. Finally, highly pure Au metal was separated from the mineralized massive sulfide via using adsorption method.

Effect of By-product Feed-based Silage Feeding on the Performance, Blood Metabolites, and Carcass Characteristics of Hanwoo Steers (a Field Study)

  • Kim, Y.I.;Park, J.M.;Lee, Y.H.;Lee, M.;Choi, D.Y.;Kwak, Wan-Sup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.180-187
    • /
    • 2015
  • This study was conducted to determine the effects of feeding by-product feed (BF)-based silage on the performance, blood metabolite parameters, and carcass characteristics of Hanwoo steers. The BF-based silage was composed of 50% spent mushroom substrate, 21% recycled poultry bedding, 15% cut ryegrass straw, 10.8% rice bran, 2% molasses, 0.6% bentonite, and 0.6% microbial additive (on a wet basis), and ensiled for over 5 d. Fifteen steers were allocated to three diets during the growing and fattening periods (3.1 and 9.8 months, respectively): a control diet (concentrate mix and free access to rice straw), a 50% BF-based silage diet (control diet+50% of maximum BF-based silage intake), and a 100% BF-based silage diet (the same amount of concentrate mix and ad libitum BF-based silage). The BF-based silage was fed during the growing and fattening periods, and was replaced with larger particles of rice straw during the finishing period. After 19.6 months of the whole period all the steers were slaughtered. Compared with feeding rice straw, feeding BF-based silage tended (p = 0.10) to increase the average daily gain (27%) and feed efficiency (18%) of the growing steers, caused by increased voluntary feed intake. Feeding BF-based silage had little effect on serum constituents, electrolytes, enzymes, or the blood cell profiles of fattening steers, except for low serum Ca and high blood urea concentrations (p<0.05). Feeding BF-based silage did not affect cold carcass weight, yield traits such as back fat thickness, longissimus muscle area, yield index or yield grade, or quality traits such as meat color, fat color, texture, maturity, marbling score, or quality grade. However, it improved good quality grade (1+ and 1++) appearance rates (60% for the control group vs 100% for the BF-based silage-fed groups). In conclusion, cheap BF-based silage could be successfully used as a good quality roughage source for beef cattle.