DOI QR코드

DOI QR Code

Mineralogical Characteristics and Fundamental Study of Flotation for Molybdenum Ore

몰리브덴광의 광물학적 특성 및 부선 기초연구

  • Oyunbileg, Purev (Department of Advanced Energy and Resources Engineering, Chosun University) ;
  • Hyun Soo, Kim (Department of Advanced Energy and Resources Engineering, Chosun University) ;
  • Chul-Hyun, Park (Department of Advanced Energy Engineering, Chosun University)
  • Received : 2022.11.30
  • Accepted : 2022.12.12
  • Published : 2022.12.31

Abstract

This study investigated the mineralogical characteristics and basic flotation properties of domestic molybdenum ores. The source mineral of molybdenum was identified as molybdenite, and the main gangue minerals in the raw ore were silicate minerals. Copper, lead, and zinc were also found in trace amounts. Based on the results of basic flotation properties, molybdenite's zeta potential showed negative charges in all pH ranges. The contact angle of molybdenite increased with pH, reaching a maximum of 74° at pH 9. In optimal conditions, the grade and recovery of the concentrate by unit flotation were MoS2 82.4% and 92.04%, respectively. Further investigation of the impurities in the concentrate revealed a sulfide mineral with surface characteristics similar to molybdenite and silicate minerals combined with molybdenite, which may degrade the quality of the concentrate. To improve the concentrate quality, we intend to control silicate minerals through regrinding and liberation and use column flotation to improve fine particle separation efficiency.

본 연구에서는 국내 부존 몰리브덴광을 대상으로 광물학적 특성 및 부유선별 기초특성을 파악하였다. 몰리브덴의 근원광물은 휘수연석으로 확인되었으며 원광 내 주요 맥석광물은 규산염광물이었다. 구리, 납 및 아연 등은 극미량으로 나타났다. 부유선별 기초특성 결과, 휘수연석의 제타전위는 pH 전영역에서 음전하를 나타내었다. 휘수연석의 접촉각은 pH의 증가에 따라 증가하였고 최대값은 pH 9에서 74°을 나타내었다. 단위부선의 최적조건에서 정광의 품위와 회수율은 각각 MoS2 82.4%와 92.04%를 나타내었다. 정광내 불순물 조사결과, 정광의 품위를 저하시킬 수 있는 휘수연석과 유사한 특성을 보이는 황화광물, 그리고 휘수연석과 결합된 규산염광물이 관찰되었다. 따라서, 정광의 품위향상을 위해 재분쇄/단체분리 향상을 통한 규산염광물의 제어와 미립자광물 선별 효율을 높일 수 있는 컬럼부선등이 요구된다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. 20227A10100030).

References

  1. Wadsworth, J., Wittenauer, J., 1993 : The history of development of molybdenum alloys for structural applications, pp.26, United States.
  2. Shields, J.A., Applications of molybdenum metal and its alloys, International Molybdenum Association(IMOA), https://www.imoa.info/molybdenum-media-centre/downloads/, November 1, 2022.
  3. Zhang, X., Lu, L., Cao, Y., et al., 2020 : The flotation separation of molybdenite from chalcopyrite using a polymer depressant and insights to its adsorption mechanism, Chemical Engineering Journal, 395, pp.125137.
  4. Yi, G., Macha, E., Van Dyke, J., et al., 2021 : Recent progress on research of molybdenite flotation: A review, Advances in colloid and interface science, 295(4), pp. 102466
  5. Kim, B.S., Sohn, H.S., Lee, J.C., et al., 2008 : Status on Manufacturing Molybdenum and Molybdenum Compounds, Trends in Metals & Materials Engineering, 21(4), pp.13-20.
  6. Smirnov, K., Raspopov, N., Shneerson, Y.M., et al., 2010 : Autoclave leaching of molybdenite concentrates with catalytic additives of nitric acid, Russian Metallurgy (Metally), 2010(7), pp.588-595. https://doi.org/10.1134/S0036029510070025
  7. Jeon, H.-S., Lee, E.-S., Baek, S.-H., et al., 2016 : Recovery of High-Grade Molybdenite Concentrate for Lubricant Use by Froth Flotation, The Korean Soc iety of Mineral and Energy Resources Engineers, 53(3), pp.219-230. https://doi.org/10.12972/ksmer.2016.53.3.219
  8. Park, C.-H., Jeon, H.-S., Kim, B.-G., et al., 2009 : Recovery of Roasting-Molybdenite Concentrate by Froth Flotation, Korean Journal of Materials Research, 19(12), pp. 661-666. https://doi.org/10.3740/MRSK.2009.19.12.661
  9. Rincon, J., Gaydardzhiev, S., Stamenov, L., 2019 : Investigation on the flotation recovery of copper sulphosalts through an integrated mineralogical approach, Minerals Engineering, 130, pp.36-47. https://doi.org/10.1016/j.mineng.2018.10.006
  10. Abdollahi, M., Bahrami, A., Mirmohammadi, M.S., et al., 2020 : A process mineralogy approach to optimize molybdenite flotation in copper-molybdenum processing plants, Minerals Engineering, 157, pp.106557.
  11. Lotter, N., Kowal, D., Tuzun, M., et al., 2003 : Sampling and flotation testing of Sudbury Basin drill core for process mineralogy modelling, Minerals Engineering, 16(9), pp.857-864. https://doi.org/10.1016/S0892-6875(03)00207-3
  12. Can, N.M., Celik, I.B., Bicak, O., et al., 2013 : Mass balance and quantitative mineralogy studies for circuit modification, Mineral Processing and Extractive Metallurgy Review, 34(5), pp.348-365. https://doi.org/10.1080/08827508.2012.656779
  13. Huynh, L., Feiler, A., Michelmore, A., et al., 2000 : Control of slime c oatings by the use of anionic phosphates: A fundamental study, Minerals Engineering, 13(10-11), pp. 1059-1069. https://doi.org/10.1016/S0892-6875(00)00090-X
  14. Park, C.-H., Jeon, H.-S., 2010 : The effect of sodium silicate as pH modifier and depressant in the froth flotation of molybdenite ores, Materials Transactions, 51(7), pp. 1367-1369. https://doi.org/10.2320/matertrans.M2009397
  15. Qin, W., Wu, J., Jiao, F., et al., 2017 : Mechanism study on flotation separation of molybdenite from chalcocite using thioglycollic acid as depressant, International Journal of Mining Science and Technology, 27(6), pp.1043-1049. https://doi.org/10.1016/j.ijmst.2017.06.011
  16. Wang, Z., He, T., Li, H., et al., 2022 : Influence of magnetized water on molybdenite flotation and its mechanism. Environmental Technology, 43(1), pp.107-115. https://doi.org/10.1080/09593330.2020.1779354
  17. Wan, H., Yang, W., Cao, W., et al., 2017 : The interaction between Ca2+ and molybdenite edges and its effect on molybdenum flotation, Minerals, 7(8), pp.141.
  18. Zhang, Q., Zhu, H., Yang, B., et al., 2019 : Effect of Pb2+ on the flotation of molybdenite in the presence of sulfide ion, Results in Physics, 14, pp.102361.
  19. Tanaka, Y., Miki, H., Suyantara, G.P.W., et al., 2021 : Mineralogical Prediction on the Flotation Behavior of Copper and Molybdenum Minerals from Blended Cu-Mo Ores in Seawater, Minerals, 11(8), pp.869.
  20. Lin, S., Wang, C., Liu, R., et al., 2022 : Surface characterization of molybdenite, bismuthinite, and pyrite to identify the influence of pH on the mineral floatability, Applied Surface Science, 577, pp.151756.
  21. Nie, Q., Cheng, Y., Liu, C., et al., 2020 : Mineralogy Study on a Fine-Grained Cu-Mo Sulphide Ore in Jiudingshan China, In Proceedings of the IOP Conference Series: Materials Science and Engineering, 782(4), pp.42017. https://doi.org/10.1088/1757-899X/782/4/042017
  22. Arbiter, N., Fujii, Y., Hansen, B., et al., 1975 : Surface properties of hydrophobic solids. Advances in Interfacial Phenomena of Particulate/Solution/Gas System, Applications to Flotation Research, P. Somasundaran and R.B. Grieves, eds., AICHE Symposium Series, AICHE Symp. 71, pp.176-182.