• Title/Summary/Keyword: Maximum efficiency control

Search Result 777, Processing Time 0.03 seconds

Collision Avoidance Power Control of Carrier Sensing Zone for Energy Efficiency in Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율을 위한 반송파 감지지역의 충돌방지 전력제어)

  • Kim, Chang-Bok;Kim, Nam-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.53-60
    • /
    • 2011
  • In Wireless Sensor Networks, IEEE 802.11 happen unnecessary energy consume because of packet transmission using maximum power between sensor node. The BASIC scheme is to use maximum transmission power for RTS-CTS and minimum required transmission power so as to high energy efficiency for DATA-ACK. However BASIC scheme may degrade network throughput with collision of ACK packet by node in carrier sensing zone and may result in higher energy consumption than when using IEEE 802.11 without power control. Existing PCM(Power Control MAC) scheme is to use DATA packet transmission method by periodically maximum power level so as to sensing DATA packet transmit in carrier sensing zone of transmission node, and this method can avoid collision of ACK packet. This paper present problem by energy efficiency of PCM scheme, and design some more improved PCM scheme.

A Study on the Instrumentation and Valuation of Photovoltaic Energy Utilization System (태양광발전 에너지이용시스템의 계측과 평가에 관한 연구)

  • Chung, Heun-Sang;Baek, Hyung-Lae;Cho, Geum-Bae;Kim, Dong-Hwi;Kim, Dae-Gon;You, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.496-499
    • /
    • 1991
  • Photovoltaic system has very low energy conversion efficiency and the output characteristics of solar cell is varied by the Insolation quantity and the temperature. In order to improve the efficiency of photovoltaic system, the energy which has got from solar cell must be use maximum. In this paper, it was stimultaneous executed both MPPT control and instrumentation in order that the operating point of solar cell is located maximum power point, using the PWM inverter and micro-computer, which is for the purpose of acquiring maximum power from the solar cell. As a result, maximum power point tracking had carried out and the efficiency of photovoltaic system improved, even if insolation quantity and the temperature are varied.

  • PDF

Development of Automatic Tracking Control Algorithm for Efficiency Improvement of PV Generation (태양광 발전의 효율 향상을 위한 자동추적 제어 알고리즘 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1823-1831
    • /
    • 2010
  • This paper proposes an automatic tracking control algorithm for efficiency improvement of photovoltaic generation. Increasing the power of PV systems should improve the efficiency of solar cells or the power condition system. The normal alignment of the PV module always have to run perpendicular to the sun's rays. The solar tracking system, able to improve the efficiency of the PV system, was initiated by applying that to the PV power plant. The tracking system of conventional PV power plant has been studied with regard to the tracking accuracy of the solar cells. Power generation efficiency were increased by aligning the cells for maximum exposure to the sun's rays. Using a perpendicular position facilitated optimum condition. However, there is a problem about the reliability of tracking systems unable to not track the sun correctly during environmental variations. Therefore, a novel control algorithm needs to improve the generation efficiency of the PV systems and reduce the loss of generation. This control algorithm is the proposed automatic tracking algorithm in this paper. Automatic tracking control is combined the sensor and program method for robust control in environment changing condition. This tracking system includes the insolation, rain sensor and anemometer for climate environment changing. Proposed algorithm in this paper, is compared to performance of conventional tracking control algorithm in variative insolation condition. And prove the validity of proposed algorithm through the experimental data.

Maximum Power Point Tracking Control of Photovoltaic Array Using Fuzzy control (퍼지제어에 의한 태양전지의 최대출력점 추적제어)

  • Kim, Jong-Su;Kim, Dae-Gwun;Kim, Sung-Nam;Lee, Seung-hwan;Kim, Yong-Joo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2262-2264
    • /
    • 1997
  • In this paper, Maximum Power Point Tracking Method using Fuzzy controller is proposed to improve energy conversion efficiency. The solar cell has an optimum operating point to be able to get maximum power. To obtain maximum power from photovoltatic any, photovoltatic power system usually requires maximum power point tracking controller. The output characteristics of solar cell are nonlinear. To obtain maximum power from photsvoltatic array, the fuzzy controller only uses the output power. Therefore this control method is easy to implement to real system.

  • PDF

Maximum Power Point Tracking for Photovoltaic System Using Fuzzy Logic Controller

  • Abo-Khalil A.G.;Lee D.C.;Seok J.K.;Choi J.W.;Kim H.K.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.503-506
    • /
    • 2003
  • The photovoltaic generators have a nonlinear V-I characteristics and maximum power points which vary with the illumination levels and temperatures. Using maximum power point tracker with the intermediate converter can increase the system efficiency by matching the PV systems to the load. A novel MPPT control for photovoltaic system is proposed. The system input parameters are (dP, dI, and last incremental of duty ratio $L\deltaD$)and the output is the new incremental value (new ${\deltaD}$) according to the maximum power point under various illumination levels. Using fuzzy logic controller allows extracting the maximum power rapidly and without significant oscillations. Also FLC provides excellent features such as fast response, good performance and the ability to change the fuzzy parameters to improve control system.

  • PDF

Efficiency Optimization Control of Induction Motor System using Fuzzy Control (퍼지제어를 이용한 유도전동기 시스템의 효율 최적화 제어)

  • Chung, Dong-Hwa;Park, Gi-Tae;Lee, Hong-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.318-324
    • /
    • 2001
  • Efficiency optimization of an indirect vector controlled induction motor drive is proposed. The loss models are used in the validation of the fuzzy logic based on-line efficiency optimization control. At steady state, the fuzzy controller adaptively changes the excitation current on the basis of measured input power, until the maximum efficiency point is reached. The pulsating torque, due to flux reduction, has been compensated by an ingenious feedforward scheme. During transient state, rated flux is established to get the best transient response. Through a comprehensive simulation study, the results confirmed the validity of the proposed method.

  • PDF

A New Efficient Mppt Control Algorithm for Low Insolation Intensity

  • Yu, Gwon-Jong;Jung, Young-Seok;Park, Ju-Yeop
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.214-218
    • /
    • 2002
  • In this paper, the effectiveness of three different control algorithms are thoroughly investigated via simulation and a proposed efficiency evaluation method of experimentation. Both the steady state and transient characteristics of each control algorithm along with its measured efficiency are analyzed. Finally, a novel two-mode maximum power point tracking (MPPT) control algorithm combining the constant voltage control and the incremental conduction (IncCond) methods is proposed to improve the efficiency of the 3KW PV power generation system at different insolation conditions. Experimental results show that the proposed two-mode MPPT control provides excellent performance at less than 30% insolation intensity, covering the whole insolation area without additional hardware circuitry.

A Novel Efficiency Optimization Control of SynRM Considering Iron Loss with Neural Network (신경회로망에 의한 철손을 고려한 SynRM의 새로운 효율 최적화 제어)

  • Kang, Sung-Joon;Ko, Jae-Sub;Choi, Jung-Sik;Baek, Jung-Woo;Jang, Mi-Geum;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.776_777
    • /
    • 2009
  • Optimal efficiency control of synchronous reluctance motor(SynRM) is very important in the sense of energy saving and conservation of natural environment because the efficiency of the SynRM is generally lower than that of other types of AC motors. This paper is proposed a novel efficiency optimization control of SynRM considering iron loss using neural network(NN). The optimal current ratio between torque current and exciting current is analytically derived to drive SynRM at maximum efficiency. This paper is proposed an efficiency optimization control for the SynRM which minimizes the copper and iron losses. The design of the speed controller based on adaptive learning mechanism fuzzy-neural networks(ALM-FNN) controller that is implemented using fuzzy control and neural networks. The objective of the efficiency optimization control is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. The control performance of the proposed controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

Target Operation Voltage Guidelines Considering Voltage Level in Each Voltage Control area by Applying Optimization Technique Through EMS Data Observation (EMS data 분석 및 최적화 기법을 적용한 제어지역별 목표운전전압 제안)

  • Sung, Ung;Kim, Jae-Won;Kim, Tae-Gyun;Lee, Byong-Jun;Jung, Eung-Soo;Cho, Jong-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.671-678
    • /
    • 2009
  • This paper presents target operation voltage guidelines of each voltage control area considering both voltage stability and economical efficiency in real power system. EMS(Energy Management System) data, Real-time simulator, shows not only voltage level but lots of information about real power system. Also this paper performs optimal power flow calculation of three objective functions to propose the best target operation voltage. objective function of interchange power flow maximum and active power loss minimization stand for economical efficiency index and reactive power reserve maximum objective unction represents stability index. Then through simulation result using optimazation technique, the most effective objective function is chosen. To sum up, this paper divides voltage control area into twelve considering electric distance characteristics and estimate or voltage level by the passage of time of EMS peak data. And through optimization technique target operation voltage of each voltage control area is estimated and compare heir result. Then it is proposed that the best scenario to keep up voltage stability and maximize economical efficiency in real power system.

In/Output Matching Network Based on Novel Harmonic Control Circuit for Design of High-Efficiency Power Amplifier (고효율 전력증폭기 설계를 위한 새로운 고조파 조절 회로 기반의 입출력 정합 회로)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • In this paper, a novel harmonic control circuit has been proposed for the design of high-efficiency power amplifier with Si LDMOSFET. The proposed harmonic control circuit haying the short impedances for the second- and third-harmonic components has been used to design the in/output matching network. The efficiency enhancement effect of the proposed harmonic control circuit is superior to the class-F or inverse class-F harmonic control circuit. Also, when the proposed harmonic control circuit has been adapted to the input matching network as well as the output matching network, the of ficiency enhancement effect of the proposed power amplifier has increased all the more. The measured maximum power added efficiency (PAE) of the proposed power amplifier is 82.68% at 1.71GHz band. Compared with class-F and inverse class-F amplifiers, the measured maximum PAE of the proposed power amplifier has increased in $5.08{\sim}9.91%$.