• Title/Summary/Keyword: Maximum depth

Search Result 1,989, Processing Time 0.031 seconds

Kirchhoff Prestack Depth Migration for the Complex Structure Using One-Way Wave Equation (일방향 파동방정식을 이용한 복잡한 구조의 키리히호프 중합전 심도구조보정)

  • Ko, Seung-Won;Yang, Seung-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.18-22
    • /
    • 2002
  • As a single arrival traveltime, maximum energy arrival traveltime has been known as the most proper operator for Kirchhoff migration. In case of the model having the simple structure, both the first arrival traveltime and the maximum energy arrival traveltime can be used as the correct operators for Kirchhoff migration. However for some model having the complex and high velocity contrast structure, the migration using the first arrival traveltime can't give the correct depth section. That is, traveltime to be required in Kirchhoff migration is the maximum energy traveltime, but, needs considerably more calculation time than that of first arrival. In this paper, we propose the method for calculating the traveltime approximated to the maximum energy arrival using one-way wave equation. After defining the WAS(Wrap Around Suppression) factor to be used for calculating the first arrival traveltime using one-way wave equation as the function of lateral grid interval and depth and considering the delay time of source wavelet. we calculate the traveltime approximated to the maximum energy arrival. to verify the validity of this traveltime, we applied this to the migraion for simple structure and complex structure and compared the depth section with that obtained by using the first arrival traveltime.

Estimation of Scour Depth at the Seadike Closure Gap (방조제 물막이구간의 세굴심도 추정)

  • 나정우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.287-292
    • /
    • 1998
  • The phenomena of local scour due to a current from a seadike closure gap which is protected by rock, then on to an erodible bed, have been studied. Based on the data of hydraulic model test, the scour characteristics have been investigated for the variation of maximum scour depth with time until reaching equilibrium stage and the shape of ultimate scour hole. A brief evaluation of DHL formula for the relationship between maximum scouring depth and time and a dimensionless form leading to time-scale introduced. On the basis of DHL formula, modified DHL formula denoted DHL-RDC formula is extend to the range of estimation of scour depth compared to DHL formula verified by model test.

  • PDF

Fatigue life evaluation of socket welded pipe with incomplete penetration defect: I-test and FE analysis

  • Lee, Dong-Min;Kim, Seung-Jae;Lee, Hyun-Jae;Kim, Yun-Jae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3852-3859
    • /
    • 2021
  • This paper presents experimental and numerical analysis results regarding the effects of an incomplete penetration defect on the fatigue lives of socket welded pipes. For the experiment, four-point bending fatigue tests with various defect geometries (defect depth and circumferential length) were performed, and test results are presented in terms of stress-life data. The results showed that for circumferentially short defects, the fatigue life tends to increase with increasing crack depth, but for longer defects, the trend becomes the opposite. Finite element analysis showed that for short defects, the maximum principal stress decreases with increases in crack depth. For a longer defect, the opposite trend was found. Furthermore, the maximum principal stress tends to increase with an increase in defect length regardless of the defect depth.

Normalized Cross-Correlations of Solar Cycle and Physical Characteristics of Cloud

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.225-234
    • /
    • 2019
  • We explore the associations between the total sunspot area, solar north-south asymmetry, and Southern Oscillation Index and the physical characteristics of clouds by calculating normalized cross-correlations, motivated by the idea that the galactic cosmic ray influx modulated by solar activity may cause changes in cloud coverage, and in turn the Earth's climate. Unlike previous studies based on the relative difference, we have employed cloud data as a whole time-series without detrending. We found that the coverage of high-level and low-level cloud is at a maximum when the solar north-south asymmetry is close to the minimum, and one or two years after the solar north-south asymmetry is at a maximum, respectively. The global surface air temperature is at a maximum five years after the solar north-south asymmetry is at a maximum, and the optical depth is at a minimum when the solar north-south asymmetry is at a maximum. We also found that during the descending period of solar activity, the coverage of low-level cloud is at a maximum, and global surface air temperature and cloud optical depth are at a minimum, and that the total column water vapor is at a maximum one or two years after the solar maximum.

Calculating and Measuring the Sinking Performance of Small-scale Purse Seine Gear in Java, Indonesia, to Improve the Gear

  • Widagdo, Aris;Lee, Chun-Woo;Lee, Jihoon
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.221-227
    • /
    • 2015
  • We analyzed the small-scale purse-seine gear that is used along the North Coast of Java, Indonesia, using computer-aided tools to modify the gear. Data from the middle position of the leadline showed that the maximum depth reached by the net was 30 m. A similar result was also calculated. According to the calculated result, the mean sinking speed of the current gear at the middle position of the leadline was 0.13 m/s, and the maximum tension during pursing was 1,794 kgf. The best sinking performance was found in modified gear that used a 30.3 mm mesh knotless polyester net. The maximum depth reached by the net was 38 m, and mean sinking speed was 0.16 m/s at the middle position of the leadline. The maximum tension during pursing was 1,044 kgf. Independent sample t-test results show that the mean sinking depth and sinking speed in the simulated and measured results did not differ (P > 0.05). These results are expected to improve the efficiency and selectivity of small-scale purse seine gear.

Characteristics of Uplift Capacity of a Embedded Foundation and Soil Type (매입기초와 토질에 따른 인발저항력 특성)

  • Lim, SeongYoon;Kim, YuYoung;Yu, SeokChul;Kim, MyeongHwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.23-30
    • /
    • 2019
  • In this study, we evaluated the applicability of proper embedded depth of fillings by examining the uplift resistance using spiral foundation and top base foundation. As a result of the model test, the maximum uplift resistance increased with the embedded depth. The maximum uplift resistance of each region was found to be 50cm depth. The spiral foundation was 335.14N of Sancheong, 312.32N of Seongju, 403.94N of Wanju, and the top base foundation was 745.06N of Sancheong, 1028.82N of Seongju and 950.76N of Wanju. The yield point after the elastic section in the stress-displacement graph of the top base foundation was calculated as the maximum uplift resistance. For this reason, farmers do not actually use top bases foundation. Therefore, it was considered that the additional load increase due to slip connector will not occur. Model test results show that the maximum uplift resistance increases with the purlinss installed under the ground. Therefore, additional comparative studies through purlins installation will be needed.

Stability Analysis of Sheet Pile Reinforced with Strut (버팀대로 보강된 널말뚝의 안정해석)

  • Kim, Ji Hoon;Kang, Yea Mook;Chee, In Taeg
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.226-236
    • /
    • 1997
  • The results obtained by elasto-plastic analysis method about the displacement, deformation and stability on the soft ground excavation using sheet pile were summarized as follows ; 1. In the case of strut 1 step, the maximum wall displacement value in the first and the second excavation was small, but it increase remarkably after the third excavation and when the excavation depth was 8m, the point of maximum wall displacement was shown 0.75H~0.8H. 2. The value of safety factor(Fs) was increased with increasing of the penetration depth of sheet pile, cohesion and internal friction angle of ground. Safety factor was mostly effected by penetration depth of sheet pile and more effected by cohesion than internal friction angle of ground. 3. Since the deformation of sheet pile of this ground from the results of analysis and measurement increased remarkabaly after 6m excavation depth, it was desirable that the point of strut installation was GL-6m. 4. Safe excavation depth on ground by analysis considered penetration depth, cohesion and internal friction was shown at the table 3.

  • PDF

Experimental study on the tension of cables and motion of tunnel element for an immersed tunnel element under wind, current and wave

  • Wu, Hao;Rheem, Chang-Kyu;Chen, Wei;Xu, Shuangxi;Wu, Weiguo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.889-901
    • /
    • 2021
  • The tension of cables and motion response significantly affect safety of an immersed tunnel element in the immersion process. To investigate those, a hydrodynamic scale-model test was carried out and the model experiments was conducted under wind, current and wave loads simultaneously. The immersion standby (the process that the position of the immersed tunnel element should be located before the immersion process) and immersion process conditions have been conducted and illustrated. At the immersion standby conditions, the maximum force of the cables and motion is much larger at the side of incoming wind, wave and current, the maximum force of Element-6 (6 cables directly tie on the element) is larger than for Pontoon-8 (8 cables tie on pontoon of the element), and the flexible connection can reduce the maximum force of the mooring cables and motion of element (i.e. sway is expecting to decrease approximate 40%). The maximum force of the mooring cables increases with the increase of current speed, wave height, and water depth. The motion of immersed tunnel element increases with increase of wave height and water depth, and the current speed had little effect on it. At the immersion process condition, the maximum force of the cables decrease with the increase of immersion depth, and dramatically increase with the increase of wave height (i.e. the tension of cable F4 of pontoons at wave height of 1.5 m (83.3t) is approximately four times that at wave height of 0.8 m). The current speed has no much effect on the maximum force of the cables. The weight has little effect on the maximum force of the mooring cables, and the maximum force of hoisting cables increase with the increase of weight. The maximum value of six-freedom motion amplitude of the immersed tunnel element decreases with the increase of immersion depth, increase with the increase of current speed and wave height (i.e. the roll motion at wave height of 1.5 m is two times that at wave height of 0.8 m). The weight has little effect on the maximum motion amplitude of the immersed tunnel element. The results are significant for the immersion safety of element in engineering practical construction process.

Scour around Piers in the Stage Hydrograph (수위변화에 따른 교각주위에서의 세굴현상연구)

  • An, Sang-Jin;Yeon, Gi-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.4
    • /
    • pp.335-346
    • /
    • 1997
  • This study aims at examining closely the scour around a pier due to irregular water stage changes during flood. At the Sangye bridge is located lowermost downstream of the Bocheong stream in the Kum River, the IHP experimental watershed. For this purpose, we have analyzed the change of scour depths due to stage hydrographs of experimental basin by a simulation. To examine the scour phenomenon around a pier due to irregular stage change in flood, we have analyzed the change of scour depth corresponding to stage hydrograph of field watershed after verification of model channel. From this study, the following conclusions are made: First, in case of predicting the maximum scour depth around a pier with stage hydrograph in the state of steady flow, we should choose the highest stage. Second, after increasing the stage, the equilibrium scour depth became smaller than the maximum scour depth. Therefore, in case of estimating the maximum scour depth in rivers, it is recommended that we should consider additional scour depth with is reduced by infilling the sediments.

  • PDF

Depth Dose According to Depth during Cone Beam Computed Tomography Acquisition and Dose Assessment in the Orbital Area Using a Three-Dimensional Printer

  • Min Ho Choi;Dong Yeon Lee;Yeong Rok Kang;Hyo Jin Kim
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.2
    • /
    • pp.68-77
    • /
    • 2024
  • Background: Cone beam computed tomography (CBCT) is essential for correcting and verifying patient position before radiation therapy. However, it poses additional radiation exposure during CBCT scans. Therefore, this study aimed to evaluate radiological safety for the human body through dose assessment for CBCT. Materials and Methods: For CBCT dose assessment, the depth dose was evaluated using a cheese phantom, and the dose in the orbital area was evaluated using a human body phantom self-fabricated with a three-dimensional printer. Results and Discussion: The evaluation of radiation doses revealed maximum doses of 14.14 mGy and minimum doses of 6.12 mGy for pelvic imaging conditions. For chest imaging conditions, the maximum doses were 4.82 mGy, and the minimum doses were 2.35 mGy. Head imaging conditions showed maximum doses of 1.46 mGy and minimum doses of 0.39 mGy. The eyeball doses using a human body phantom model averaged at 2.11 mGy on the left and 2.19 mGy on the right. The depth dose ranged between 0.39 mGy and 14.14 mGy, depending on the change in depth for each imaging mode, and the average dose in the orbit area using a human body phantom was 2.15 mGy. Conclusion: Based on the experimental results, CBCT did not significantly affect the radiation dose. However, it is important to maintain a minimal radiation dose to optimize radiation protection following the as low as reasonable achievable principle.