• Title/Summary/Keyword: Maximum Time

Search Result 9,598, Processing Time 0.044 seconds

A Bicriterion Scheduling Problems with Time/Cost Trade-offs (시간/비용의 트레이드-오프를 고려한 2목적 스케쥴링 문제)

  • 정용식;강동진
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.81-87
    • /
    • 1999
  • This paper discusses a bicriterion approach to sequencing with time/cost trade-offs. The first problem is to minimize the total flow time and the maximum tardiness. And second is to the maximum tardiness and resource allocation costs. This approach, which produces an efficient flintier of possible schedules, has the advantage that it does not require the sequencing criteria to be measurable in the same units as the m allocation cost. The basic single machine model is used to treat a class of problems in which the sequencing objective is to minimize the maximum completion penalty. It is further assumed that resource allocation costs can be represented by linear time/cost function.

  • PDF

The Effect of Delayed Compaction on Unconfined Compressive Strength of Lime Soil Mixtures (석회혼합토의 지연다짐이 압축강도에 미치는 영향)

  • 김재영;이기춘
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.4
    • /
    • pp.4799-4804
    • /
    • 1978
  • In order to investigate the effect of delayed compaction on the strength of the lime soil mixtures, labroatory test with two kind of soils was performed at four levels of lime content, at five levels of water content, and at six love's of delayed times. The results are summarized as follows; 1. Maximum dry density and optimum moisture content decreased with increase of the delayed times. The decreasing rate of those values at the earlier delayed time were large, and those values showed almost constant after about four hours of delayed time. 2. According to the increase of the delayed time, the decreasing rate of maximum dry density and optimum moisture content was large ia S-2 sampl, but was a little in S-1 sample. 3. Unconfined compressive strength of lime soil mixtures decreased with the increase of the delayed time, and the decreasing rate of its strength increased with the increase of the lime content. 4. Water content corresponding to the maximum strength was a little higher than the optimum moisture content along the increase of lime content and delayed time but its value was large in fine soil.

  • PDF

Dead-Time Implementation Method for CHB Inverter Cells (CHB 인버터 셀의 데드타임 구현 방법)

  • Kim, Kyung-Seo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.59-65
    • /
    • 2021
  • This study proposes a dead-time implementation method suitable for cell voltage control of a cascaded H-bridge (CHB) inverter. The PWM module of an existing microcontroller cannot generate a maximum voltage due to the dead-time effect when used as the cell controller of the CHB inverter. In the proposed method, the operation method of the PWM module was changed without using the dead time module included in the existing microcontroller, so that the cell output voltage can be increased to the maximum voltage without voltage discontinuity. During the maximum voltage generation period, the full turn-on state can be maintained without unnecessary switching. The validity of the proposed method is confirmed through an experiment.

Examination of 3D long-term viscoplastic behaviour of a CFR dam using special material models

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.119-131
    • /
    • 2019
  • Time dependent creep settlements are one of the most important causes of material deteriorations for the huge water structures such as concrete faced rockfill dams (CFRDs). For this reason, performing creep analyses of CFRDs is vital important for monitoring and evaluating of the future and safety of such dams. In this study, it is observed how changes viscoplastic behaviour of a CFR dam depending the time. Ilısu dam that is the longest concrete faced rockfill dam (1775 m) in the world is selected for the three dimensional (3D) analyses. 3D finite difference model of Ilısu dam is modelled using FLAC3D software based on the finite difference method. Two different special creep material models are considered in the numerical analyses. Wipp-creep viscoplastic material model and burger-creep viscoplastic material model were rarely used for the creep analyses of CFRDs in the last are taken into account for the concrete slab and rockfill materials-foundation, respectively. Moreover, interface elements are defined between the concrete slab-rockfill materials and rockfill materials-foundation to provide interaction condition for 3D model. Firstly, dam and foundation are collapsed under its self-weight and static behaviour of the dam is evaluated for the empty reservoir conditions. Then, reservoir water is modelled considering maximum water level of the dam and time-dependent creep analyses are performed for maximum reservoir condition. In this paper, maximum principal stresses, vertical-horizontal displacements and pore pressures that may occur on the dam body surface during 30 years (from 2017 to 2047) are evaluated in detail. According to numerical analyses, empty and maximum reservoir conditions of Ilısu dam are compared with each other in detail. 4 various nodal points are selected under the concrete slab to better seen viscoplastic behaviour changes of the dam and viscoplastic behaviour differences of these points during 30 years are graphically presented. It is clearly seen that horizontal-vertical displacements and principal stresses for maximum reservoir condition are more than the empty reservoir condition of the dam and significant pore pressures are observed during 30 years for maximum reservoir condition. In addition, horizontal-vertical displacements, principal stresses and pore pressures for 4 nodal points obviously increased until a certain time and changes decreased after this time.

Application of Response Spectrum Analysis Method for the Estimation of the Vertical Vibration in Structures (구조물의 연직진동해석을 위한 응답 스펙트럼 해석법의 활용)

  • 이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.12-19
    • /
    • 1998
  • Response spectrum analysis method is widely used for seismic analysis of building structure. Analysis of structural vibration for equipment, machine and moving loads are executed by time history analysis. This method is very complex, difficult and tedious. In this study, maximum response of structure for this case are simply and fast. calculated by mode shape and response spectrum for excitation. At first, Response spectrum and time history analysis for some earthquake is carried and investigate the error of maximum displacement response for R. S. A. Secondly, The process for response spectrum analysis in excitation are calculated, and maximum model response are combined by CQC (Complete Quadratic Combination) methods. Finally, Combining maximum displacement response is compared with one of time history analysis.

  • PDF

Extraction Yields and Functional Properties of Garlic Extracts by Response Surface Methodology

  • Lim, Tae-Soo;Do, Jeong-Ryong;Kwon, Joong-Ho;Kim, Hyun-Ku
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.379-383
    • /
    • 2008
  • Extraction characteristics of garlic and functional properties of corresponding extract were monitored by response surface methodology (RSM). Maximum extraction yield of 26.41% was obtained at microwave power of 146.29 W, ethanol concentration of 63.31 %, and extraction time of 5.88 min. At microwave power, ethanol concentration, and extraction time of 114.84 W, 58.83%, and 1.42 min, respectively, maximum electron-donating ability (EDA) was 72.86%. Maximum nitrite-scavenging ability was 94.62% at microwave power, ethanol concentration, and extraction time of 81.83 W, 2.65%, and 3.83 min, respectively. Superoxide dismutase (SOD) showed maximum pseudo-activity of 49.12% at microwave power of 34.23 W, ethanol concentration of 33.11 %, and extraction time of 4.40 min. Based on superimposition of 4-dimensional RSM with respect to extraction yield, electron-donating ability, nitrite-scavenging ability, and pseudo-activity of SOD, optimum ranges of extraction conditions were microwave power of 0-100 W, ethanol concentration of 40-70%, and extraction time of 2-8 min.

Effect of a Prolonged-run-induced Fatigue on the Ground Reaction Force Components (오래 달리기로 인한 피로가 지면반력 성분에 미치는 영향)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.225-233
    • /
    • 2013
  • The purpose of this study was to estimate the potential injury via analyzing ground reaction force components that were resulted from a prolonged-run-induced fatigue. For the present study, passive and active components of the vertical ground reaction force were determined from time and frequency domain. Shear components of GRF also were calculated from time and frequency domain. Twenty subjects with rear foot contact aged 20 to 30, no experience in injuries of the extremities, were requested to run on the instrumented tread-mill for 160 minutes at their preference running speed. GRF signals for 10 strides were collected at 5, 35, 65, 95, 125, and 155 minute during running. In conclusions, there were no significant difference in the magnitude of passive force, impact load rate, frequency of the passive and active components in vertical GRF between running times except the magnitude of active force (p<.05). The magnitude of active force was significantly decreased after 125 minute run. The magnitude of maximum peak and maximum frequency of the mediolateral GRF at heel strike and toe-off have not been changed with increasing running time. The time up to the maximum peak of the anteroposterior at heel-strike moment tend to decrease (p<.05), but the maximum peak and frequency of that at heel and toe-off moment didn't depend significantly on running time.

The Effect of Changes in Polymerization Conditions of Orthodontic Acrylic Resin on Maximum Load (Orthodontic Acrylic Resin의 중합조건 변화가 최대하중에 미치는 영향)

  • Lee, Gyu Sun
    • Journal of Technologic Dentistry
    • /
    • v.35 no.2
    • /
    • pp.127-136
    • /
    • 2013
  • Purpose: In order to find out the impact of changes in polymerization conditions of orthodontic acrylic resin on maximum load. Methods: While maintaining mixing ratio 3:1 of polymer and monomer in spray-on way in the production condition of polymerization temperature $25^{\circ}C$ or $37^{\circ}C$ for 10 minutes or 30 minutes of polymerization time by pressure $3kfg/cm^2$ or $6kfg/cm^2$ in the lab maintaining $25^{\circ}C$ of room temperature, the change in maximum load rise rate was tested by producing 5 acrylic resin specimens for orthodontics per group to meet the standards of $25mm{\times}2mm{\times}2mm$ and using INSTRON with the 3rd bar 2mm in diameter and parallel support bending device of $15{\pm}0.1mm$ as test equipment showing 30.00mm/min of crosshead speed, $50{\pm}16$ N/min of load ratio in the laboratory of $24^{\circ}C$ room temperature and as a result, the following results were obtained. Results: 1. When increasing pressure from $3kfg/cm^2$ to $6kfg/cm^2$, maximum load was lowered by -4.285%. 2. When increasing polymerization time from 10 minutes to 30 minutes, maximum load rose by 3.848%. 3. When increasing polymerization temperature from $27^{\circ}C$ to $37^{\circ}C$, maximum load rose by 5.854%. Conclusion: Considering the above test results that polymerization time and polymerization temperature when polymerizing acrylic resin for orthodontics according to changes in working conditions had an impact on the rate of rise of maximum load values but the rate of rise was lowered when increasing pressure from $3kfg/cm^2$ to $6kfg/cm^2$, we came to a conclusion that high pressure more than necessary does not affect the rate of rise of maximum load.

An investigation on the maximum earthquake input energy for elastic SDOF systems

  • Merter, Onur
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.487-499
    • /
    • 2019
  • Energy-based seismic design of structures has gradually become prominent in today's structural engineering investigations because of being more rational and reliable when it is compared to traditional force-based and displacement-based methods. Energy-based approaches have widely taken place in many previous studies and investigations and undoubtedly, they are going to play more important role in future seismic design codes, too. This paper aims to compute the maximum earthquake energy input to elastic single-degree-of-freedom (SDOF) systems for selected real ground motion records. A data set containing 100 real ground motion records which have the same site soil profiles has been selected from Pacific Earthquake Research (PEER) database. Response time history (RTH) analyses have been conducted for elastic SDOF systems having a constant damping ratio and natural periods of 0.1 s to 3.0 s. Totally 3000 RTH analyses have been performed and the maximum mass normalized earthquake input energy values for all records have been computed. Previous researchers' approaches have been compared to the results of RTH analyses and an approach which considers the pseudo-spectral velocity with Arias Intensity has been proposed. Graphs of the maximum earthquake input energy versus the maximum pseudo-spectral velocity have been obtained. The results show that there is a good agreement between the maximum input energy demands of RTH analysis and the other approaches and the maximum earthquake input energy is a relatively stable response parameter to be used for further seismic design and evaluations.

The Study of Isometric Endurance Time by Task Type and Maximum Voluntary Contraction (작업형태 및 최대 수의적 수축에 따른 등척성 근지구력에 관한 연구)

  • Sim, Jeong-Hun;Lee, Sang-Do
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.57-69
    • /
    • 2003
  • This study was performed to investigate the isometric endurance time as percentages of maximum voluntary contraction. Electromyogram(EMG) and Borg's CR-I0 value were measured by push-pull-up-down tasks for 10 healthy males. The normalized EMG value and the MPF(mean power frequency) were used to estimate the muscle recruitment pattern and the development of muscle fatigue. The subjects exerted and maintained 5 levels of %MVC(maximum voluntary contraction) in $90^{\circ}$ shoulder flexion/ 180oelbow extension at sitting posture. The up-task showed the lower endurance time and higher Borg's CR-I0 value than the other task types. Comparing Rohmert's curve with the endurance time of task types. Rohmert's curve overestimated the endurance time of up-task and underestimated the endurance time of push-pull-down tasks. The normalized EMG value showed that muscles recruitment patterns were different from task types. The 4 muscles(biceps brachii muscle, tricep brachii muscle. middle deltoid muscle. trapezius muscle) recruitment patterns of up-task were higher than those of other tasks. The MPF value decreased with the endurance time, and the shift of MPF at up-task was larger than that of the other task types.