• Title/Summary/Keyword: Maximum Time

Search Result 9,597, Processing Time 0.036 seconds

Maximum TE Setting Range for Quantitatively Evaluating T2 Relaxation Time : Phantom Study (T2 이완시간의 정량적 평가에 있어서 Maximum TE의 설정 범위에 대한 연구 : 팬텀연구)

  • Park, Jin Seo;Kim, Seong-Ho
    • Journal of radiological science and technology
    • /
    • v.41 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • This study aimed to evaluate the range of maximum TE that could measure T2 relaxation time accurately by setting diverse maximum TE with using contrast medium phantoms. Contrast medium phantoms ranging from low to high concentrations were made by using Gadoteridol. The relaxation time and relaxation rate were compared and evaluated by conducting T2 mapping by using reference data based on various TEs and data obtained from different maximum TEs. It was found that accurate T2 relaxation time could be expressed only when the maximum TE over a certain range was used in the section with long T2 relaxation time, such as the low concentration section of saline or gadolinium contrast medium. Therefore, the maximum TE shall be longer than the T2 relation time for accurately maturing the T2 relaxation of a certain tissue or a substance.

An Experimental Study on the Shortest optimum time for Body Temperature measurement (체온측정에 필요한 최단적정시간규명을 위한 실험적 연구)

  • 홍여신;이선옥
    • Journal of Korean Academy of Nursing
    • /
    • v.5 no.2
    • /
    • pp.38-50
    • /
    • 1975
  • This study was conducted to find the shortest optimum time for taking oral temperature and axillary temperature, which does not affect reliability of body temperature. For this purpose, first, the time at which all the samples are reaching maximum temperature is identified Second, the mean maximum temperature is compared with the mean temperature of each consecutive measurement by T-test to find the time at which no significant changes in temperature occurs along time sequence. Third, optimum temperatures are set at points of -0.2℉, -0.4℉, -0.6℉, -0.8℉, -1.0℉, -1.2℉, -1.4℉, from maximum temperature. A point of time at which 90% of samples reach at optimum temperature is identified and defined as optimum time. The study sample, a total of 164 cases were divided into two groups according to their measured body temperature. The group with body temperature below 37 $^{\circ}C$(A group) and above 37$^{\circ}$1'C (B group) were compared on the time required to reach maximum temperature and optimum temperature. The results are as follow. 1. The time required for total sample to reach maximum temperature was 13 minutes in both groups by oral method, 15 minutes in A group and 13 minutes in B group by axillary method. Time required for 90 % of cases reach maximum temperature by oral method was 10 minutes in both group. By axillary method, 12 minutes in A group. (Ref: table 2) 2. Statistical analysis by means of T-test, the time which does not show a significant change by oral method were 12 minutes in A group and 11 minutes in B group, and by axillary method 14 minutes in A group and 11 minutes in B group. (Ref: table 5, 6.) 3. Where optimum temperature was defined as maximum temperature minus 0.2 ℉, optimum time was found 8 minutes in both groups by oral method, and 11 minutes in A group and 9 minutes in B group by axillary method 4. Where optimum temperature was defined as maximum temperature minus 0.4 ℉, optimum time was found 7 minutes in A group and 6 minutes in B group by oral method, and 9 minutes in A group and 7 minutes in B group by axillary method 5. Where optimum temperature was defined as maximum temperature minus 0.8 ℉, optimum time was found 6 minutes in A group and 6 minutes in B group by axillary method (Ref: table 7, 8, 9, 10) 6. The commonly practiced temperature taking time, 3 minutes in oral method and 5 minutes in axillary method can be accepted as pertinent when physiological variation of body temperature at the mean level of -1, 2 ℉ is accepted. 7. The difference in time required to resister maximum temperature was compared between the group with body temperature below 37$^{\circ}C$ and above 37$^{\circ}$1'C, and found no significant difference in oral mettled and 1 - 4 minute difference in axillary method with shorter time requirement in feverish group.

  • PDF

Simulation Model Development for Configuring a Optimal Port Gate System (최적 항만 게이트 시스템 구성을 위한 시뮬레이션 모델 개발)

  • Park, Sang-Kook;Kim, Young-Du
    • Journal of Navigation and Port Research
    • /
    • v.40 no.6
    • /
    • pp.421-430
    • /
    • 2016
  • In this study, a gate simulation model was developed to reduce the truck waiting time for trucking companies servicing container terminals. To verify the developed model, 4 weeks of truck gate-in/gate-out data was collected in December 2014 at the Port of Busan New Port. Also, the existing gate system was compared to the proposed gate system using the developed simulation model. The result showed that based on East gate-in, a maximum number of 50 waiting trucks with a maximum waiting time of 120 minutes. With the proposed system the maximum number of waiting trucks was 10 with a maximum waiting time of 5.3 minutes. Based on West gate-in, the maximum number of waiting trucks was 17 and the maximum waiting time was 34 minutes in the existing gate system. With the proposed system the maximum number of waiting trucks was 10 with a maximum waiting time of 5.3 minutes. Based on West gate-out, the maximum number of waiting trucks was 11 with a maximum waiting time of 5.5 minutes. With the proposed system the maximum number of waiting trucks was 9 with a maximum waiting time of 4.4 minutes. This developed model shows how many waiting trucks there are, depending on the gate-in/gate-out time of each truck. This system can be used to find optimal gate system operating standards by assuming and adjusting the gate-in/gate-out time of each truck in different situations.

Improved Maximum Access Delay Time, Noise Variance, and Power Delay Profile Estimations for OFDM Systems

  • Wang, Hanho;Lim, Sungmook;Ko, Kyunbyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4099-4113
    • /
    • 2022
  • In this paper, we propose improved maximum access delay time, noise variance, and power delay profile (PDP) estimation schemes for orthogonal frequency division multiplexing (OFDM) system in multipath fading channels. To this end, we adopt the approximate maximum likelihood (ML) estimation strategy. For the first step, the log-likelihood function (LLF) of the received OFDM symbols is derived by utilizing only the cyclic redundancy induced by cyclic prefix (CP) without additional information. Then, the set of the initial path powers is sub-optimally obtained to maximize the derived LLF. In the second step, we can select a subset of the initial path power set, i.e. the maximum access delay time, so as to maximize the modified LLF. Through numerical simulations, the benefit of the proposed method is verified by comparison with the existing methods in terms of normalized mean square error, erroneous detection, and good detection probabilities.

Maximum Likelihood Estimation for the Laplacian Autoregressive Time Series Model

  • Son, Young-Sook;Cho, Sin-Sup
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.3
    • /
    • pp.359-368
    • /
    • 1996
  • The maximum likelihood estimation is discussed for the NLAR model with Laplacian marginals. Since the explicit form of the estimates cannot be obtained due to the complicated nature of the likelihood function we utilize the automatic computer optimization subroutine using a direct search complex algorithm. The conditional least square estimates are used as initial estimates in maximum likelihood procedures. The results of a simulation study for the maximum likelihood estimates of the NLAR(1) and the NLAR(2) models are presented.

  • PDF

Studies of the Forest Structure and Productivity in Korea -Models of Maximum Productivity and Optimum Cutting Time of the Forests by Annual Ring Growth analyses- (韓國의 森林構造에 따른 物質生産力에 관한 分析 - 年齡生長 分析에 의한 森林 樹木의 最高生産力期 및 最適伐採期 推定모델 -)

  • Chang, Nam-Kee;Kim, Heui-Baek;Oh, In-Hye;Chang, Myung-Ae
    • The Korean Journal of Ecology
    • /
    • v.13 no.3
    • /
    • pp.191-202
    • /
    • 1990
  • For the maximun yield of the forest trees in the forest management, the growth of annual ring area of the major forest trees was analysed in the four areas in South Korea. The time to the maximum productivity and the optimum cutting time for the maximum yield were estimated. The growth curve of annual ring area showed sigmoid like that of other organisms. Only the growth coefficient among the areas between Fraxinus rhynchophylla and Pinus koraiensis represented significance (5% level). The growth coefficient among forest trees between Pinus densiflora and Abies holophylla, Larix kaempferi and Carpinus laxiflora, Larix kaempferi and Quercus mongolica, Larix kaempferi and Quercus serrata, Larix kaempferi and Pinus koraiensis, and Larix kaempferi and Abies holophylla represented significance (5% level). Among eight forest trees, the time to maximum productivity (tm) of Larix kaempferi was the earliest (21.4 year), and Abies holophylla was the latest (91.9 year). The optimum cutting time for the maximum yield (tc) of L. kaempferi was the earliest (29.4 year) and that of A, holophylla was the latest (122.2 year) of all communities. The optimum cutting time for the maximum yield was 1.33 times as late as the time to the maximum productivity. If the growth of annual ring area as the forest tree for wood is regarded, L. kaempferi and P. densiflora are thought to be more economical than A. holophylla and P. koraiensis.

  • PDF

A Low Cost Maximum Power Point Tracking Technique for the Solar Charger

  • Nguyen, Thanh Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.5-6
    • /
    • 2012
  • In this paper, a simplified maximum power point tracking technique for the solar charger is presented. Main advantages of the proposed charger include low cost and optimized charge time. The maximum power point tracking method is used to deliver the maximum power from PV array to the battery thereby reducing the charge time. Moreover, the proposed technique which tracks the maximum power point by adjusting output current helps reduce the quantity of required number of sensors for the charger. The experimental protype was implemented by using an 80W PV array, a buck converter and a digital signal processor to verify the feasibility of the proposed method.

  • PDF

Effect of Heating Rate and Keeping Time at Maximum Temperature on the Properties of Woodceramics Made from Thinned Logs (승온속도 및 최고온도 유지시간이 간벌재로 제조된 우드세라믹의 성질에 미치는 영향)

  • Oh, Seung-Won;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.3 s.131
    • /
    • pp.38-44
    • /
    • 2005
  • This research investigated the variation of density, the weight loss, dimensional shrinkage and heat conduction by the heating rate and keeping time at maximum temperature of woodceramics, when sawdust boards made from thinned logs of Pinus densiflora, Larix kaemferi and Pinus koraiensis were impregnated with phenol-formaldehyde resin, and then were formed by heating rate ($2^{\circ}C/min{\sim}6^{\circ}C/min$) and keeping time at maximum temperature (1~5 h). As the heating rate increased, the density and thickness shrinkage decreased, but weight loss and linear shrinkage increased. The more the keeping time at maximum temperature, the greater the linear shrinkage and thickness shrinkage. The heating conduction was superior at the heating rate is $2^{\circ}C/min$ and the keeping time at maximum temperature of 2 hs.

Stability and a scheduling method for network-based control systems (네트워크를 이용한 제어 시스템의 안정도 및 스케줄링에 관한 연구)

  • 김용호;권욱현;박홍성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1432-1435
    • /
    • 1996
  • This paper obtains maximum allowable delay bounds for stability of network-based control systems and presents a network scheduling method which makes the network-induced delay be less than the maximum allowable delay bound. The maximum allowable delay bounds are obtained using the Lyapunov theorem. Using the network scheduling method, the bandwidth of a network can be allocated to each node and the sampling period of each sensor and controller can be determined. The presented method can handle three kinds of data (periodic, real-time asynchronous, and non real-time asynchronous data) and guarantee real-time transmissions of real-time synchronous data and periodic data, and possible transmissions of non real-time asynchronous data. The proposed method is shown to be useful by examples in two types of network protocols such as the token control and the central control.

  • PDF

An Operation Grouping and Its Maximum Allowable Conductor Temperature Considering Facility-conditions of Transmission Lines (송전선로의 설비특성을 고려한 운영그룹 분류 및 최고허용온도)

  • Sohn, Hong-Kwan;Kim, Byung-Geol;Park, In-Pyo;An, Sang-Hyun;Jang, Tae-In;Choi, Jang-Kee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1922-1928
    • /
    • 2008
  • The thermal rating of a conductor are maximum continuous current capacity and short time emergency current capacity. The overload operation for a faults have an effect on a conductor lifetime. Its time duration and overload level are limited to facility conditions of transmission lines. The short time emergency current capacity in KOREA observe the KEPCO's DESIGN RULE 1210, but its rules are not included to concept of an allowable short time duration. This papers are described to the calculation concept of short time emergency current capacity considering a time duration and an overload level. And we suggested a operation grouping and its maximum conductor temperature considering facility conditions - conductor lifetime, stability of connection points, conductor height above ground and clearance, in the operating and new T/L.