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Abstract

The maximum likelihood estimation is discussed for the NLAR
mode]l with Laplacian marginals. Since the explicit form of the es-
timates cannot be obtained due to the complicated nature of the like-
lihood function we utilize the automatic computer optimization sub-
routine using a direct search complex algorithm. The conditional least
square estimates are used as initial estimates in maximum likelihood
procedures. The results of a simulation study for the maximum like-
lihood estimates of the NLAR(1) and the NLAR(2) models are pre-
sented.
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1. INTRODUCTION

The New Laplacian AutoRegressive(NLAR) model introduced by Dewald
and Lewis(1985) is a non-Gaussian autoregressive time series model with
Laplacian(double-exponential) marginals. The NLAR model can be applied
to marginally double-exponentially distributed data with a larger kurtosis or
longer tails than Gaussian data. Son and Cho(1988) discussed the properties
and the forecasting procedures of the NLAR process. As for the estimation
of model parameters, Karlsen and Tjgstheim(1988) obtained the conditional
least squares(CLS) estimates which are consistent and asymptotically normal
for all four parameters of the NLAR(2) model. They pointed out, however,
that the standard errors of the CLS estimates may be large, especially for
small parameter values, so that considerably large sample may be needed to
obtain reasonable estimates.

In this paper the maximum likelihood (ML) estimation is considered for
the NLAR model. Since the ML estimate can not explicitly be obtained from
the likelihood function, the IMSL optimization routine is used and the CLS
estimates are used as initial estimates.

2. THE MODELS

Let {X:} be a stationary sequence of random variables whose marginal
distribution is standard Laplacian. It is shown in Son and Cho(1988) that the
NLAR(p) process can be constructed analogously to the NLAR(2) process of
Dewald and Lewis(1985) as follows : for t = 0,+1,+2,...,

[ B1Xe-1 wp. o
BaXi—2 W.p. g
X, =9 : o te (2.1)
BoXi-p WP o

*

{ 0 wp. l-—a |

with o = 37 [ a;, where 0 < |8 <1, 0 < a; < 1,and 0 < o < 1. In

NLAR(p) process, the structure of random error ¢, will be derived so that it

should give a stationary standard Laplacian marginal distribution of {X,}.
Thus, for example, in the NLAR(2) case of p = 2,

L, w.p. 1-—p —ps
&y = |b2|Lt W.p. P2 (22)
lbs|L, w.p. ps,
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where {L,} is asequence of i.i.d. standard Laplacian variables and bs, b3, ps, and
p3 are determined from the equations (3.8)-(3.12) of Dewald and Lewis(1985),
which are the functions of four parameters ay, ag, 81, and B, of the NLAR(2)
model. Similarly, in the NLAR(1) case of p = 1,

wp 1-—p

_ ) L
gf‘{ BIVT=aL. wp. p (2:3)

where p = a8%/{1 — (1 —a)B?}. Note that the NLAR(1) model is the special
case of as = 0 and 8y = 0 in the NLAR(2) model.

3. CONDITIONAL LEAST SQUARE ESTIMATION

Assuming that the observations of {X,;} are available for t = 1,2,...,n,
the CLS estimates for four parameters, a;, ag, 81, and 9 in the NLAR(2)
model can be directly obtained from the equations (3.4) and (3.12) of Karlsen
and Tjgstheim(1988). The CLS estimates are given as follows :

~9 A A2
. a; . oi+a;
QcLs: = 7, g and  Borsi = ~ , =12, (3.1)
o T a; a;
where )
6. = 2i=3 Ti_j ey TeThi = D3 TeTe—j D3 Ty—1T4-2 (3.2)
Z =3 z7_, 23 €] g — (3ofs To-124-2)? , '
P Z?:S(a:?—j - 2)? 2i=3 Gt(xfﬂ' —2) =7 ;3G (wt2~j - 2)H, (3.3)
" Z?:a(wtz—l - 2)? Z?:3($t2—2 —2)? - H?
with ét — ($t - &1:1:t_1 - &zxt_Q)Q + 2&1&2$t_1mt_2 + 2(&% + a% - 1), Hn =

S s(z? = 2)(z2 5 —2) and j = 2(1) in case of s = 1(2). Also the estimates
Qcrs; and ﬁc 151, ¢ = 1,2, will be strongly and jointly asymptotically normal
by Theorem 3.1 of Karlsen and Tjgstheim(1988). The admissible region for
aiy, ag, B1, and B, in the NLAR(2) implies the restrictions on ay, as, 011, and

099 as follows :
0 < lay| +az <1
011099 > a%a% (3.4)

D<oy < m1n{025, Iall(l - ai)}
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Specially, letting o = B2 = 0 in (3.4) and (3.12) of Karlsen and Tjgstheim (1988),
the CLS estimates of o and 3 in the NLAR(1) model are given by

. 0’ - &+ a?
acLs = = Tar and fBcrs = P (3.5)
where
a = &?ﬁ# and & = gl — 2)‘£(517t —2 &$z—1)z + 2(a® - 1)}
Li=2 Ti1 Yiealzi g —2)

(3.6)
The admissible region for @ and 8 in the NLAR(1 ) implies the restrictions
on a and o as follows :

0<lal <1
{ 0 < 0 < min{0.25, |a](1 —a)} } (3.7)

4. MAXIMUM LIKELITHOOD ESTIMATION

Since the NLAR(2) process is the second-order Markovian process, the
conditional probability density of (X3, X4, -+, X,) given X; and X, is of the
form,

n
fX3,X4 ,,,,, anXl,Xg(x3az4’-"7mn,m17m2 Hth|Xt 1,X:-92 mtlmt 1, Tt— 2) (41)

Also, the conditional distribution function of X, given X,_; and X,_, is given
by

PI'(Xt < iﬂthc—l =z 1, Xi-2 = 513t~2)
= 3 aip; Pr(Ly < (20 — Bize-i)/b;)
with Q3 = 1-— a1 — a3, Pp1 — 1 - P2 — P3, ﬂg = 0, and bl = 1. NOW, after
differentiating the function (4.2) with respect to z;, we have the monotone
function of the log likelihood conditional on z; and zy as follows :

(4.2)

n 3 3
L™ (a1, az, B1,P2) 111{ Zaipj|bj|_1eXP{—|ﬂ7t — Bize-il/|bs1}

t=3 i=1j=1

(4.3)
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The ML estimates &prr 1, @nr 1.2, BML.I, and BML,Q are the values of a1, as,
31, and 3, which maximize L*(ay,aq, 51, 82) of (4.3). Here, we can not but
point out the fact that the function (4.3) becomes infinite on the boundaries
of the parameter space. But, this problem can be solved by looking for a
maximum in the interior of the parameter space.

Letting oy = 3, — 0 in (4.3), the monotone function of the log likelihood
conditional on z; in the NLAR(1) process is given by

L (a,8) = ”1 {Zzazp] Yexp{—|z: — ﬂﬂt—i”dj}}) (4.4)

t= i=1j=1

where o = 1 —a, g =, B1 = B, 2 = 0, pp = p = af*/{1 = (1 — a)B%},
pr=1—p,d; =1, and dy = |3|V1 — a. The ML estimates &y, and BML of
parameters a and 3 in the NLAR(1) model are the values of o and 8 which
maximize L* (e, 3) of (4.4). Since these monotone likelihood functions, which
are to be maximized, are nonlinear and complex in parameters and have the
absolute component, not only there are no closed form expressions for the
estimates which maximize L*, but also standard numerical optimization will
not work.

5. SIMULATION EXPERIMENTS

To observe the sample behaviors of the ML estimates which we introduce
in Section 4 and also compare the performances of the CLS and the ML
estimates, we conducted some Monte Carlo experiments for the NLAR(1)
process. The simulation experiments were performed on samples of size n =
15, 30, 60, 100, 200, 500, 1000, 10000 and 30000 for each of four models with
(o, 8) = (0.1,-0.2),(0.3,0.4), (0.5, —0.6) and (0.9, 0.8). 1000 repetitions were
made on samples of size n = 15, 30, 60, 100 repetitions on n = 100, 200, 500,
1000, 20 repetitions on n = 10000, and 10 repetitions on n = 30000. The
optimization subroutine BCPOL, PC/IMSL subroutine, which minimizes a
function of parameters subject to bounds on the parameters using a direct
search Complex algorithm which is based on only function-value information,
not on derivative information at each iteration, was used to find the ML
estimates. Since the BCPOL subroutine requires starting values for o and
3, the CLS estimates d¢¢ps and Bc 1s of (3.5) were used as initial estimates.
When the CLS estimates of a and 8 which are outside the admissible region
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were obtained, they were corrected by boundary values of the restriction
(3.7). Table 5.1 — 5.4 display the simulation results which show the average
bias, the average mean square error(MSE) of the CLS and the ML estimates,
and the proportions of repetitions producing corrections in CLS estimation
procedures.

From four tables, we can observe some features as follows :

(i) The proportion of repetitions producing the CLS estimates of a and
B which are outside the admissible region generally decreases as n increases
for each model. Also this proportion for each n becomes large when |aj|
approaches 0 or 1. The reasons for these results are explained by the fact
that the data of the stochastic process when |a3| ~ 0 or 1, or small samples
are in the close vincinty to the boundary of parameter values.

(ii) In the model with o = 0.1, 8 = —0.2(i.e.|a8| = 0.02) the bias and the
MSE are very large even for the considerably large samples. The reason for
this result is that the nature of the stochastic process with |a3| ~ 0 is mainly
determined by the random error term «,.

(iii) For n < 200 in the model with & = 0.3, 3 = 0.4(i.e. |ag| = 0.12) and
n < 30 with o = 0.5, 8 = —0.6(i.e. |@8| = 0.30) including the model with
a = 0.1, 8 = —0.2, the bias or the MSE are so large that the estimates are
practically useless.

(iv) The MSE decreases as |a3| approaches 1.

(v) The decrease of MSE with the increase in n becomes apparent as |af|
approaches 1.

(vi) Except a few cases besides the estimation of 8 in the model with
a = 0.1 and 8 = —0.2 the ML estimates are generally better than the CLS
estimates in the sense of the bias and the MSE. The accuracy of the ML
estimates depends on that of the CLS estimates used as initial estimates in
ML estimation procedures.

The simulation experiments for the NLAR(2) process were also performed.
To compare the performance of the ML estimates with the CLS estimates of
Karlsen and Tjgstheim(1988), data were generated from the NLAR(2) models
with (a1, ag, 81, 32) = (0.4,0.5,0.6,0.7) and (0.25,0.25, 0.5, 0.5), respectively.
The numbers of repetitions made on each sample of size n are as same as
the cases of the NLAR(1). As in the case of NLAR(1) the CLS estimates of
ar, az, 81, and By outside the admissible range were corrected by boundary
values of the restriction (3.4). Thus, the ML estimates dML_I,&ML,Q,BML,l
and BM .2 which maximize L* of (4.3) were obtained by using the CLS esti-
mates &¢rs; and BACLSVZ-, i = 1,2, of (3.1) as initial estimates. The features of
results shown in Table 5.5 — 5.6 are similar to those of the NLAR(1) model.
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Table 5.1 Simulation results for the NLAR(1) model with @ = 0.1 and
8 =—0.2 (|aB| = 0.02).

365

n Proportion of Bias(a) MSE(a) Bias(3) MSE(3)
corrections CLS ML CLS ML CLS ML CLS ML
15 0.813 0.535 0.627 0.438 0.481 0.195 0.208 0.444 0.375
30 0.790 0.554 0.581 0.463 0.446 0.141 0.178 0.339 0.301
60 0.788 0.541 0.536 0.457 0.420 0.159 0.174 0.312 0.282
100 0.840 0.557 0.540 0.481 0.419 0.127 0.182 0.248 0.190
200 0.780 0.555 0.506 0.484 0.395 0.112 0.152 0.224 0.208
500 0.760 0.419 0.382 0.380 0.317 0.182 0.166 0.371 0.303
1000 0.680 0.393 0.331 0.336 0.262 0.068 0.050 0.238 0.215
10000 0.450 0.245 0.184 0.226 0.148 -0.162 -0.133 0.148 0.140
30000 0.500 0.336 0.275 0.320 0.228 -0.092 -0.003 0.089 0.048

Table 5.2 Simulation results for the NLAR(1) model with a = 0.3 and
B =04 (Jap] = 0.12).

n Proportion of Bias(a) MSE(«) Bias(3) MSE(B)
corrections CLS ML CLS ML CLS ML CLS ML
15 0.793 0.357 0.400 0.274 0.248 -0.248 -0.206 0.444 0.376
30 0.743 0.345 0.346 0.267 0.219 -0.207 -0.153 0.356 0.284
60 0.710 0.310 0.284 0.254 0.192 -0.157 -0.137 0.301 0.254
100 0.600 0.303 0.208 0.237 0.133 -0.106 -0.066 0.225 0.184
200 0.610 0.303 0.245 0.246 0.172 -0.030 -0.052 0.149 0.095
500 0.470 0.192 0.121 0.177 0.091 0.025 -0.027 0.129 0.075
1000 0.270 0.202 0.114 0.145 0.063 -0.019 -0.045 0.072 0.029
10000 0.000 0.033 0.004 0.007 0.001 -0.019 -0.003 0.007 0.001
30000 0.000 0.004 0.000 0.004 0.000 0.009 0.000 0.009 0.000

Table 5.3 Simulation results for the NLAR(1) model with o = 0.5 and
8= —0.6 (|aB| = 0.30).

n Proportion of Bias(a) MSE(x) Bias(3) MSE(3)
corrections CLS ML CLS ML  CLS ML CLS ML
15 0.813 0.149 0.227 0.163 0.121 0.214 0.225 0.399 0.314
30 0.697 0.165 0.165 0.152 0.088 0.121 0.124 0.229 0.184
60 0.494 0.142 0.111 0.123 0.058 0.056 0.055 0.117 0.072
100 0.410 0.157 0.059 0.110 0.034 0.041 -0.004 0.063 0.032
200 0.170 0.093 0.034 0.067 0.013 0.027 0.006 0.047 0.014
500 0.020 0.095 0.008 0.040 0.004 0.048 0.001 0.027 0.003
1000 0.010 0.026 0.001 0.016 0.002 0.014 0.003 0.014 0.001
10000 0.000 0.009 0.002 0.003 0.000 0.007 0.002 0.003 0.000

30000 0.000 0.007 0.002 0.001 0.000 0.006 0.002 0.001 0.000
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Table 5.4 Simulation results for the NLAR(1) model with @ = 0.9 and
B =0.8 (Jag| = 0.72).

n Proportion of Bias(a) MSE(a) Bias(8) MSE(3)
corrections CLS ML CLS ML CLS ML CLS ML
15 0.799 -0.118 -0.013 0.076 0.009 0.037 0.015 0.066 0.037
30 0.695 -0.084 -0.016 0.052 0.006 0.043 0.027 0.021 0.010
60 0.535 -0.050 -0.010 0.032 0.003 0.027 0.015 0.013 0.005
100 0.460 -0.033 -0.009 0.021 0.002 0.025 0.006 0.010 0.003
200 0.390 -0.003 -0.001 0.011 0.001 0.009 0.005 0.007 0.001
500 0.150 -0.016 -0.007 0.008 0.000 0.004 0.006 0.005 0.001
1000 0.060 0.000 -0.003 0.005 0.000 0.000 0.001 0.003 0.000
10000 0.000 0.011 0.000 0.000 0.000 -0.009 0.000 0.000 0.000
30000 0.000 -0.008 0.000 0.000 0.000 0.005 0.000 0.000 0.000

Table 5.5 Mean values, standard deviations(in parentheses) and propor-
tions of corrections for the conditional least square estimates and the max-
imum likelihood estimates in the NLAR(2) model with a; = 0.4, a3 = 0.5,
B1 = 0.6, and B2 = 0.7 (Ja1 31| = 0.24, |asfB;] = 0.35).

n Proportion of CLS CLS CLS CLS ML ML ML ML
corrections [e3] (¢ ,31 ,32 ay a9 ,31 ,32

15 0.973 0.43 0.41 0.38 0.39 0.42 0.53 0.53 0.50
(0.24) (0.24) (0.61) (0.63) (0.22) (0.23) (0.47) (0.49)

30 0.950 0.43 0.43 0.48 0.53 0.41 0.52 0.58 0.62
(0.25) (0.23) (0.50) (0.48) (0.19) (0.18) (0.34) (0.31)

60 0.870 0.42 0.44 0.54 0.63 0.41 0.50 0.62 0.67
(0.23) (0.21) (0.42) (0.34) (0.14) (0.13) (0.19) (0.21)

100 0.840 0.43 0.44 0.55 0.70 0.40 0.50 0.60 0.70
(0.23) (0.22) (0.34) (0.24) (0.10) (0.09) (0.12) (0.08)

200 0.690 0.44 0.45 0.55 0.68 0.40 0.49 0.60 0.70
(0.18) (0.15) (0.27) (0.18) (0.09) (0.08) (0.08) (0.06)

500 0.490 0.43 0.49 0.57 0.68 0.41 0.49 0.60 0.70
(0.13) (0.12) (0.18) (0.12) (0.05) (0.05) (0.05) (0.04)

1000 0.310 0.42 0.49 0.59 0.71 0.40 0.49 0.60 0.71
(0.10) (0.07) (0.14) (0.09) (0.05) (0.05) (0.04) (0.04)

10000 0.000 0.40 0.50 0.61 0.70 0.40 0.50 0.60 0.70
(0.03) (0.03) (0.04) (0.04) (0.01) (0.01) (0.01) (0.01)

30000 0.000 0.40 0.50 0.60 0.70 0.40 0.50 0.60 0.70
(0.03) (0.02) (0.04) (0.02) (0.01) (0.01) (0.00) (0.00)
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Table 5.6 Mean values, standard deviations(in parentheses) and propor-
tions of corrections for the conditional least square estimates and the maxi-
munmn likelihood estimates in the NLAR(2) model with a; = 0.25, ay = 0.25,
51 - 05, and ﬁg = 0.5 (Ialﬂll = 006, Iagﬂgl - 025)
n Proportion of CLS CLS CLS CLS ML ML ML ML
corrections aq ag B Bo ay asg B Ba
15 0.975 0.42 0.44 0.15 0.08 0.43 0.48 0.30 0.15
(0.24) (0.24) (0.65) (0.61) (0.21) (0.22) (0.60) (0.60)
30 0.945 0.41 0.43 0.23 0.15 0.41 0.44 0.35 0.22
(0.26) (0.26) (0.57) (0.56) (0.21) (0.21) (0.48) (0.53)
60 0.933 0.43 0.43 0.28 0.25 0.38 0.42 0.39 0.32
(0.28) (0.28) (0.51) (0.51) (0.20) (0.21) (0.41) (0.44)
100 0.910 0.41 0.40 0.31 0.34 0.35 0.38 0.42 0.37
(0.28) (0.29) (0.48) (0.50) (0.18) (0.21) (0.35) (0.38)
200 0.770 0.39 0.46 0.37 0.34 0.32 0.38 0.48 0.41
(0.26) (0.27) (0.41) (0.39) (0.17) (0.19) (0.30) (0.25)
500 0.580 0.39 0.40 0.44 0.43 0.29 0.30 0.48 0.46
(0.26) (0.26) (0.33) (0.20) (0.14) (0.11) (0.16) (0.15)
1000 0.390 0.35 0.33 0.47 0.48 0.25 0.27 0.52 0.48
(0.20) (0.20) (0.26) (0.26) (0.06) (0.07) (0.10) (0.11)
10000 0.000 0.25 0.27 0.52 0.52 0.25 0.25 0.50 0.51
(0.05) (0.08) (0.11) (0.15) (0.02) (0.02) (0.02) (0.02)
30000 0.000 0.24 0.26 0.53 0.51 0.25 0.25 0.51 0.50
(0.03) (0.06) (0.06) (0.01) (0.01) (0.01) (0.01) (0.01)

6. CONCLUSIONS

We have shown that the maximum likelihood estimates for the NLAR(1)
and NLAR(2) models can be obtained by using the conditional least square
estimates as initial estimates of the optimization program. As Karlsen and
Tjostheim (1988) had pointed out, the estimates are virtually useless because
of large bias and the MSE if a8, i = 1,2, in the NLAR(2) and |af] in
the NLAR(1) is smaller than 0.1. It is proved in a number of experiments for
other models in addition to the models considered in this paper that for mod-
erate sample size in the model with |a;3;| much above 0.1 the ML estimates
obtained by using the CLS estimates as initial estimates in the optimization
program are better than the CLS estimates in the sense of bias and MSE. The
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ML estimation considered in this paper can be applied to the New Exponen-
tial AutoRegressive(NEAR) model of Lawrance and Lewis(1985) in maximum
likelihood procedure proposed by Smith(1986). A research on this sub ject is
under study and will be reported in the near future.
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