• Title/Summary/Keyword: Maximum Force

Search Result 2,326, Processing Time 0.026 seconds

THE OCCLUSAL FORCE AND EMG CHANGE AFTER BSSRO (양측성 하악지 시상분할술을 이용한 악교정 수술시술 후 교합력과 근전도 변화)

  • Lee, Sung-Kyu;Choi, Yong-Kwan;Hwang, Dae-Yong;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.5
    • /
    • pp.537-542
    • /
    • 2008
  • BSSRO is most frequently operated among orthognathic surgery techniques for repairment of maxillofacial deformities. In case of patients with maxillofacial asymmetry accompanying mandibular protrusion who are operated by BSSRO, this study considers the recovering time for masticatory force of each tooth and Masseteric EMG and the adequate time enabling normal occlusion. The patients who are operated with BSSRO under general anesthesia in Dankook Dental Hospital, Department of OMS are selected for this study. The control group is devided into 2. 26 patients with facial asymmetry accompanying mandibular protrusion are selected for group 1 and their maximum voluntary bite force and masseteric EMG are measured. Group 2 is formed by volunteers with healthy dentition who are measured maximum bite force and masseteric EMG on both sides of the mouth. At the week of 3rd, 5th, 7th, 9th and 11th, Mann-Whitney U test is carried on for statistical analysis and the result is as follows. 1. Patients with mandibular protrusion showed apparently low maximum bite force and masseteric EMG than patients with normal occlusion. 2. In comparison with control group 1, Occlusal force is regained in incisors and canines at the 9th week and in premolars and molars, 11th week and masseteric EMG is regained at 11th week. 3. Comparing to normal occlusal patients, no recovery could be found in experimental group in every parts of the mouth.

Biomechanical Comparison Analysis of Popular Insole and Functional Insole of Running Shoes (런닝화의 일반인솔과 기능성인솔의 운동역학적 비교 분석)

  • Shin, Sung-Hwon;Jin, Young-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.9-18
    • /
    • 2006
  • These studies show that I applied to functional insole (a specific S company) for minimizing shocks and sprain people's ankle arising from running. How to an effect on human body which studied a kinematics and kinetics from 10 college students during experiments. This study imposes several conditions by barefoot, normal running shoes and put functional insole shoes ran under average $2.0{\pm}0.24$ meter per second by motion analysis, ground reaction force and electromyography that used to specific A company. First of all, Motion analysis was caused by Achilles tendon angle, Angle of the lower leg, Angle of the knee, Initial sole angle and Barefoot angle. Second, Contact time, Vertical impact force peak timing, Vertical active force and Active force timing, and Maximum loading rate under impulse of first 20 percent and Value of total impulse caused Ground reaction force. Third. The tendon fo Quadriceps femoris, Biceps femoris, Tibialis anterior and gastronemius medials caused. electromyography. 1. Ground reaction force also showed that statically approximates other results from impact peak timing (p.001), Maximum loading rate(p<.001), Maximum loading rate timing (p<.001) and impulse of first 20 percent (p<.001). 2 Electromyography showed that averagely was distinguished from other factors, and did not show about that. Above experiment values known that there was statically difference between Motion analysis and Ground reaction force under absorbing of the functional insole shoes which was not have an effect on our body for kinetics and kinematics.

A STUDY ON THE BITING FORCE OF ANTERIOR OPENBITE AND NORMAL OCCLUSION ADULTS (정상교합자와 전치부 개방교합자의 교합력에 관한 연구)

  • Kim, Dong-Ho;Lee, Dong-Joo
    • The korean journal of orthodontics
    • /
    • v.25 no.4
    • /
    • pp.487-495
    • /
    • 1995
  • This study was undertaken to compare each maximum biting force and to investigate its relationship with the facial skeketal form, number and position of tooth contact between anterior openbite and normal occlusion adults, using the T-scan system and the lateral cephalogram. The subjects of this study consisted of a group of 25 individuals with normal occlusion and another group of 14 with anterior openbite. The obtained results of this study were as follows : 1. The maximum biting force of anterior openbite adults was less than that of normal occlusion adults. 2. In anterior openbite adults, there were negative correlations between the maximum, biting force and SN/MP, FMA, PP/MP mesurement of lateral cephalogram. 3. In anterior openbite adults, as the mesial angulation of lower first molar against the occlusal plane increased, the more the biting force decreased. 4. In both groups, the greater the number of tooth contact, the more the biting force increased. 5. In both groups, the center of effort for anteroposterior occlusal contact was located on the first molar region.

  • PDF

An Analysis of Plantar Foot Pressure Distribution and COP Trajectory Path in Lifting Posture (들기 자세에서 족저의 압력 분포와 압력중심 이동거리의 분석)

  • Lee, Myoung-Hee;Han, Jin-Tae;Bae, Sung-Soo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.1
    • /
    • pp.25-29
    • /
    • 2009
  • The purpose of this study was to investigate the effect of two different lifting posture on the plantar foot pressure, force and COP(center of pressure) trajectory path during object lifting. Fourteen healthy adults who had no musculoskeletal disorders were instructed to lift with two postures(stoop and squat) and two object weights(empty box and 10 kg box). Plantar foot pressures, forces and COP trajectory path were recorded by the F-mat system(Tekscan, Boston, USA) during object lifting with barefoot. Plantar foot surface was defined as seven regions for pressure measurement; two toe regions, three forefoot regions, one midfoot region and one heel region. Paired t-test was used to compare the outcomes of peak pressure and maximum force with different two lifting postures and two object weights. Plantar peak pressure and maximum force under hallux was significantly greater in squat posture than stoop posture during the two different boxes lifting(p<.05). During the empty box lifting, maximum force under lessor toes was significantly less and plantar peak pressure under second metatarsal region was significantly greater in squat than stoop(p<.05). Maximum force under heel was significantly less in squat than stoop posture during 10kg box lifting(p<.05). Finally, COP trajectory path was significantly greater in squat than stoop(p<.05). These findings confirm that there are significantly change in the structure and function of the foot during the object lifting with different posture. Future studies should focus on the contribution of both structural and functional change to the development of common foot problems in adults.

Effects of lower extremity stability by kinesio taping method in elite speed skating athletes' one-leg jumping (엘리트 빙상 선수들의 외발점프 훈련 시 키네시오 테이핑요법이 하지관절 안정성에 미치는 영향)

  • Lee, Young-Seok;Kwak, Chang-Soo;Lee, Chung-Il;Kim, Tae-Gyu
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.495-502
    • /
    • 2015
  • The purpose of this study was to investigating the effect of taping knee by testing the difference on kinetic variables of lower extremity when speed skating athletes jump on one leg. The results were as follows. The height of jumping after taping was higher, but the vertical height was not different according to taping. On take-off(TO), the horizontal and anterior-posterior maximum impulse force were decreased while the vertical maximum impact force was increased after taping. On landing(LD), the anterior-posterior maximum impulse force was decreased but the horizontal and vertical maximum impulse force were increased. TO, the impulse showed low after taping and the impulse dropped largely LD. The knee's moment of extension, eversion were reduced after tapping TO. LD, the flection moment of knee was decreased, but the inversion moment was increased after tapping. This study implies that the knee tapping helps injury prevention and performance enhancement, sports medicine convergence are needed.

The Wind Load Evaluation on Building Considering Vertical Profile of Fluctuating Wind Force (변동풍력의 연직분포를 고려한 건축물의 풍하중 평가)

  • Ryu, Hye-Jin;Shin, Dong-Hyeon;Ha, Young-Cheol
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.157-164
    • /
    • 2019
  • The wind tunnel test makes it possible to predict the wind loads for the wind resistant design. There are many methods to evaluate wind loads from data obtained from the wind tunnel test and these methods have advantages and disadvantages. In this study, two of these methods were analyzed and compared. One is the wind load evaluation method by fluctuating displacement and the other is the wind load evaluation method considering vertical profile of fluctuating wind force. The former method is evaluated as the sum of the mean wind load of the average wind force and the maximum value of the fluctuating wind load. The latter method is evaluated as the sum of the mean wind load and maximum value of the background wind load, and the maximum value of the resonant wind load. Two methods were applied to the wind tunnel test to compare the evaluated wind loads according to the two methods, with a maximum difference of about 1.2 times. The wind load evaluated by the method considering vertical profile of the fluctuating wind force (VPFWF) was larger than the wind load evaluated by the method by fluctuating displacement (FD). Especially, the difference of the wind load according to the two methods is large in the lower part of the building and the wind load is reversed at a specific height of the building. VPFWF of evaluating resonant wind loads and background wind loads separately is more reasonable.

Numerical Evaluation on Bending Stiffness of Nodal Connection Systems in the Single Layered Grid Considering Bolt Clearance (볼트 유격을 고려한 단층 그리드 노드 접합 시스템의 휨 강성에 대한 구조 해석적 평가)

  • Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.141-147
    • /
    • 2020
  • Single-layered grid space steel roof structure is an architectural system in which the structural ability of the nodal connection system greatly influences the stability of the entire structure. Many bolt connection systems have been suggested to enhance for better construct ability, but the structural behavior and maximum resistance of the connection system according to the size of bolt clearance play were difficult to identify. In particular, the identification of bending stiffness of the connection system is very important due to the characteristics of shell structures in which membrane stresses based on bending force effect significantly. To identify effective structural behavior and maximum bearing force, four representative nodal connection systems were selected and nonlinear numerical analysis were performed. The numerical analysis considering the size of the bolt clearance were performed to investigate structural behavior and maximum values of the bending force. In addition, the type of effective nodal connection system were evaluated. As a result, the connection system, which has two shear plane, represented high bending stiffness.

Analysis of Plantar Pressure Differences between Flat Insole Trekking Shoes and Nestfit Trekking Shoes (네스핏 트레킹화와 평면 인솔 트레킹화의 족저압력 분석)

  • Choi, Jae-Won;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.475-482
    • /
    • 2015
  • Objective : The purpose of this study was to investigate mean plantar foot pressure, maximum plantar pressure and ground reaction force, and center migration path of pressure according to the type of trekking shoes for the development of shoes. Method : Subjects of the study averaged $22.10{\pm}2.05years$ of age. Their average height was $169.27{\pm}7.62cm$ and their average weight was $64.34{\pm}10.22kg$. The method of this study was administered measuring 50 steps, at once, 3 times at a speed of 4 km/h and using the data of 30 steps. Pedar-X system measured the mean foot pressure, maximum foot pressure, mean maximum force, and center migration path of pressure by subjects' position while walking. Statistical analysis was performed by SPSS 23.0 using a paired t-test. Results : Results of the study showed Nestfit trekking shoes lower foot pressure of both feet in mean foot pressure and maximum foot pressure. Nestfit trekking shoes showed high ground reaction force (p<.001) in the midfoot, and low mean ground reaction force in the rearfoot. The center migration path of pressure showed the Nestfit trekking shoes were more stable than flat insole trekking shoes. Conclusion : It can be concluded that wearing Nestfit trekking shoes spreads pressure efficiently and induces walking stability because Nestfit trekking shoes spread the pressure of the forefoot and rearfoot to the midfoot and the center migration path of pressure shows regularly.

The Effect of Different Sitting Postures on Range of Motion, Strength and Proprioceptive Sense of Neck (다른 앉은 자세가 목의 관절가동범위, 근력, 고유수용성 감각에 미치는 영향)

  • Jung, Ji-Moon;Gu, Ja-Shin;Shin, Won-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2212-2218
    • /
    • 2012
  • The purpose of this study was to investigate the influence of different sitting postures on range of motion, strength and proprioceptive sense of neck. Fifteen healthy university students participated in the study. Depending on upright sitting position and slump sitting position, range of motion and joint position sense were measured by using Dualer IQ. Also, the maximum isometric strength and force sense were measured by using linear force. As a result, we found that the maximum angle of neck extension and the maximum isometric strength at flexion were significantly higher in upright posture than in slump posture. Also, the maximum angle of neck flexion and the maximum isometric strength at extension were higher in slump posture than in upright posture. According to the result, proper proprioception can have an beneficial effect on postural revision of neck and body by providing the information that cognize the position of head through and sustain upright posture.

Development of Sheet Metal Forming Apparatus Using Electromagnetic Lorentz Force (전자기 로렌쯔력을 이용한 박판성형 장비 개발)

  • Lee, H.M.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.38-43
    • /
    • 2010
  • Electromagnetic forming (EMF) method is one of high-velocity forming processes, which uses electromagnetic Lorentz force. Advantages of this forming technique are summarized as improvement of formability, reduction in wrinkling, non-contact forming and applications of various forming process. In this study, the EMF apparatus is developed. It is designed to be stored in 10 capacitors connected in parallel, each with a capacitance of $50{\mu}F$ and maximum working voltage of 5kV. The system has capacitance of $500{\mu}F$ and maximum stored energy of 6.25kJ. And EMF experiments are carried out to verify the feasibility of the EMF apparatus, which has enough forming force from the results of EMF experiment. In addition, peak current carrying a forming coil is predicted from theoretical background, and verified the predicted value compared with experimental value using the current measurement equipment. Consequently, EMF apparatus developed in this study can be applied to various EMF researches for commercialization.