• Title/Summary/Keyword: Maximal ratio Combining

Search Result 105, Processing Time 0.02 seconds

Performance of Opportunistic Incremental NOMA Relay System in Fading Channels (페이딩 채널에서 기회전송 증가 NOMA 릴레이 시스템의 성능분석)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.69-76
    • /
    • 2016
  • In this paper, we investigate the system performance of a cooperative relaying system of Non-orthogonal multiple access (NOMA) with successive interference cancellation (SIC), which is considered promising application in fifth generation (5G) cellular networks. Previous studies have focused on the selected relays, however we include the maxmin relay selection and derive analytical outage probability of opportunistic incremental relaying systems. For the realistic mobile environment, the distributions of relays are modeled as a homogeneous Poisson point process (PPP). And maximal ratio combining (MRC) is adapted to improve the system performance at the destination node. Analytical results demonstrate the outage probability improves with the near/far user power ratio, and the cooperative relaying scheme can achieve low outage probability in comparison to the no relaying scheme. It is also conformed that the increase of the intensity of PPP cause higher gains of the spacial diversity and hence the performance improves.

Performance Enhancement of OFDM Systems (Using Interference cancellation schemes of TD(Transmit Diversity)) (간섭제거 및 송신 다이버시티 기법을 적용한 OFDM 시스템에 대한 성능개선)

  • Kim, Jang-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.77-86
    • /
    • 2012
  • Using OFDM(Orthogonal Frequency Division Multiplexing) provides the same diversity order as MRRC(Maximal Ratio Receiver Combining). It is assumed that fading channel is constant across two consecutive symbols. Unfortunately, when the channel condition is changed for the two consecutive symbols, the OFDM using STBC(Space Time Block Code) does not offer good performance due to the large doppler shift. In this paper, we have proposed a performance enhancement scheme for OFDM using STBC over time-selective fading channel. Simulation results for various doppler shift rates are presented to robust system performance of OFDM due to using our proposed scheme over time-selective fading channel.

Performance Analysis of Diversity Received DS-CDMA/MDPSK Signals in m-distribution and Rician Fading Environments (m-분포 페이딩과 라이시안 페이딩 환경 하에서의 다이버시티 수신된 DS-CDMA / MDPSK 신호의 성능 분석)

  • 이정도;강희조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.191-198
    • /
    • 1998
  • The error are equation of DC-CDMA/MDPSK signal has been derived in m-distribution and Rician fading channels. Predeteception multipath MRC(Maximal Ratio Combining) diversity technique is employed for improving the bit error rate performance. The suitability of modeling a Rician fading environment by properly chosen m-distribution model is examined. Using the derived equation the error performance has been evaluated and shown in figures as a function of PN code sequence length(N), user number(U), multipath number(P), fading index(m), Rician factor(K), number of diversity branches(L) and ($E_b/N_o$). The results show that the error performance in Rician fading agrees well with that in m-distribution fading as fading becomes weak and as user number(U) increases and as multipath number(P) increases and diversity number(L) increases.

  • PDF

Hybrid Beamformer of CDMA Reverse Link in the Correlated SIMO Channel (CDMA 역방향 링크의 상관된 SIMO 채널을 위한 복합형 빔 성형 방식)

  • 최영관;김동구
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.11
    • /
    • pp.81-86
    • /
    • 2004
  • Hybrid beamformer composed of Direction-of-Arrival (DOA) based scheme followed by Maximal Ratio Combining (MRC) is proposed to overcome the degradation due to inaccurate channel estimation caused by insufficient pilot power, which happens in conventional Single-Input Multiple-Output (SIMO) Code Division Multiple Access (CDMA) reverse link. The proposed scheme could provide more accurate channel estimation and interference reduction at the expense of diversity gam in the spatially correlated SIMO channel. As a result, hybrid scheme outperforms conventional MRC beamformer for six or more antennas in the channel environment, in which Angle-of-Spread (AOS) is within 30$^{\circ}$.

Performance of M-ary OSTBC MIMO System (M-ary OSTBC MIMO 시스템의 성능 연구)

  • Hong, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6269-6273
    • /
    • 2015
  • Performance of the Alamouti algorithm based M-ary $2{\times}N$ OSTBC(Orthogonal Space Time Block Coded) MIMO(Multi Input Multi Output) system has been simulated varying two main parameters - the number of constellation(M), and the number of receiving antennas(N). Computer simulation has also been carried out using Matlab software for performance comparison between $2{\times}N$ MIMO and MRC(Maximal Ratio Combining) diversity antenna system to evaluate the degree of enhancement achieved through the use of Alamouti $2{\times}N$ MIMO. Under 10 dB EbNo QPSK scenario, $2{\times}1$ MIMO brought 4.2 dB BER improvement over single antenna system and $2{\times}2$ MIMO resulted in 7.4 dB BER improvement over $1{\times}2$ MRC.

On the block error rate performance of cooperative non-orthogonal multiple access short-packet communications with full-duplex relay and partial relay selection

  • Ha Duy Hung;Hoang Van Toan;Tran Trung Duy;Le The Dung;Quang Sy Vu
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.446-460
    • /
    • 2024
  • In this paper, we mathematically investigate a downlink non-orthogonal multiple access (NOMA) system for short-packet communications (SPC) in which the near users are used as full-duplex (FD) relays to forward intended signals from the source to a far user. In addition, partial relay selection is employed to enhance the performance of the FD relays under the impact of imperfect interference cancellation. At the far user, selection combining (SC) or maximal ratio combining (MRC) is employed to combine the signals received from the source and the selected FD relay. The analytical expressions for the average block error rate (BLER) of two users over flat Rayleigh fading channels are derived. Furthermore, closed-form asymptotic expressions of the average BLERs at the near and far users in high signal-to-noise ratio (SNR) regimes are obtained. The numerical results show that the analytical BLERs of the near user and far user closely match the simulation results.

Diversity Combining Techniques for DPSK Signals in Nakagami Fading Channels (나카가미 페이딩 채널에서 DPSK 신호의 다이버시티 합성기법)

  • 김창환;한영열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.34-42
    • /
    • 2000
  • In this paper, the closed form expression for the average bit error probability(BER) is derived for diversity reception using an L-branch maximal ratio combining(MRC) system which has same fading index and different fading index. Also, the BER to have same average power and Nakagami m-distribution for a generalized selection combining(SC) is derived, whereby the signal with the largest amplitude is selected from the original diversity branches in the channel, the order statistics is applied. Especially, when L is 1 in a selective diversity, the derived expression leads to that of DPSK in which SC is not applied in Nakagami fading. Changing the diversity branch L and fading index m, we compare the performance of MRC and SC.

  • PDF

A Study on the MRC and EGC in Nakagami-m Fading Channel (나까카미-m 페이딩 채널에서 최대비합성과 동이득합성에 관한 연구)

  • Lee, Kwan-Houng;Lee, Myung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.195-201
    • /
    • 2006
  • In multicarrier code division multiple access(MC-CDMA), the total system bandwidth is divided into a number of sub-bands, where each subband may use direct-sequence(DS) spreading and each subband signal is transmitted using a subcarrier frequency. In this paper, the system performance analysis of MC-CDMA using to gain combining(EGC) and maximal ratio combining(MRC) method over frequency selective Nakagami-m fading channel is analyzed. In the proposed system, a data sequence is serial-to-parallel converted, and MC-CDMA is used on each of the parallel data streams. The data streams are spread at both the symbol fraction level and at the chip level by the transmitter. In this paper, the compare to analysis,two standard diversity combining techniques, EGC and MRC, The good performance of system using to MRC more than EGC

  • PDF

Symbol Error Rate and Diversity Analysis of Receive MRC with Signal Space Diversity (신호공간 다이버시티 기법이 적용된 시스템에서 최대비 합성 수신의 이득 분석)

  • Jeon, Sung-Ho;Kyung, Il-Soo;Kim, Man-Sik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.35-38
    • /
    • 2009
  • 본 논문에서는 신호 공간 다이버시티 (Signal Space Diversity) 기법이 적용된 시스템에서 최대비 합성 (Maximal Ratio Combining) 수신시 성능 이득에 대해서 분석하였다. 먼저 심볼 오류율(Symbol Error Rate)을 수학적으로 유도하였다. 유도된 공식으로부터 상한(Upper Bound) 분석을 통해 공간 신호 다이버시티 기법이 결합될 경우 기존 대비 2배, 즉 '$2{\times}$수신안테나수' 만큼의 다이버시티 이득을 가짐을 증명하였다. 그리고 모의실험 결과와 유도된 공식 결과 값이 서로 일치함을 보여 정확성을 입증하였으며, 유도된 공식을 기반으로 신호 대 잡음비(SNR; Signal-to-Noise Ratio), 수신 안테나 개수 등 주어진 시스템 변수에 따른 최적 회전 각도를 정확히 도출할 수 있음을 보였다.

  • PDF

Soft Combination Schemes for Cooperative Spectrum Sensing in Cognitive Radio Networks

  • Shen, Bin;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.263-270
    • /
    • 2009
  • This paper investigates linear soft combination schemes for cooperative spectrum sensing in cognitive radio networks. We propose two weight-setting strategies under different basic optimality criteria to improve the overall sensing performance in the network. The corresponding optimal weights are derived, which are determined by the noise power levels and the received primary user signal energies of multiple cooperative secondary users in the network. However, to obtain the instantaneous measurement of these noise power levels and primary user signal energies with high accuracy is extremely challenging. It can even be infeasible in practical implementations under a low signal-to-noise ratio regime. We therefore propose reference data matrices to scavenge the indispensable information of primary user signal energies and noise power levels for setting the proposed combining weights adaptively by keeping records of the most recent spectrum observations. Analyses and simulation results demonstrate that the proposed linear soft combination schemes outperform the conventional maximal ratio combination and equal gain combination schemes and yield significant performance improvements in spectrum sensing.

  • PDF