This paper addresses the problem of unsupervised speech separation based on robust non-negative matrix factorization (RNMF) with ${\beta}$-divergence, when neither speech nor noise training data is available beforehand. We propose a robust version of non-negative matrix factorization, inspired by the recently developed sparse and low-rank decomposition, in which the data matrix is decomposed into the sum of a low-rank matrix and a sparse matrix. Efficient multiplicative update rules to minimize the ${\beta}$-divergence-based cost function are derived. A convolutional extension of the proposed algorithm is also proposed, which considers the time dependency of the non-negative noise bases. Experimental speech separation results show that the proposed convolutional RNMF successfully separates the repeating time-varying spectral structures from the magnitude spectrum of the mixture, and does so without any prior training.
본 논문에서는 다채널 음향 신호의 음원 분리를 수행하기 위하여, 빔공간-영역에서 다채널 비음수 행렬 분해 기법을 이용하는 음원 분리 시스템을 제안한다. 비음수 행렬 분해(NMF) 기법은 음원 분리에서 최근 널리 쓰이는 알고리즘이며, 특히 최근에는 다채널 비음수 행렬 분해(MC-NMF) 기법으로 발전하여 다채널 음향 신호에 대해서 적용되고 있다. 본 논문에서 제안하는 다채널 비음수 행렬 분해 기법은 빔공간-영역에서 수행되어, 기존의 다채널 비음수 행렬 분해 기법에 비해 좋은 성능을 가진다. 제안되는 비음수 행렬 분해 기법은 SiSEC 2010의 데이터셋을 이용하여 검증되었다.
High-performance mixed-matrix membranes that comprise both zeolitic imidazolate framework-8 (ZIF-8) and graphene oxide (GO) were synthesized with a solution casting technique to realize excellent $CO_2/CH_4$ separation. The incorporation of ZIF-8 nanocrystals alone in ODPA-TMPDA polyimide can be used to significantly enhance $CO_2$ permeability compared with that of pure ODPA-TMPDA. Meanwhile, the addition of a GO nanostack alone in ODPA-TMPDA contributes to improved $CO_2/CH_4$ selectivity. Hence, a composite membrane that contains both fillers displays significant enhancements in $CO_2$ permeability (up to 60%) and $CO_2/CH_4$ selectivity (up to 28%) compared with those of pure polymeric membrane. Furthermore, in contrast to the ZIF-8 mixed-matrix membrane, which showed decreased mechanical stability, it was found that the incorporation of GO could improve the mechanical strength of mixed-matrix membranes. Overall, the synergistic effects of the use of both fillers together are successfully demonstrated in this paper. Such significant improvements in the mixed-matrix membrane's $CO_2/CH_4$ separation performance and mechanical strength suggest a feasible and effective approach for potential biogas upgrading and natural gas purification.
This paper describes an audio source separation that is based on nonnegative matrix factorization (NMF) and expectation maximization (EM). For stable and highperformance separation, an effective auxiliary source separation that extracts source residuals and reprojects them onto proper sources is proposed by taking into account an ambiguous region among sources and a source's refinement. Specifically, an additional NMF (model) is designed for the ambiguous region - whose elements are not easily represented by any existing or predefined NMFs of the sources. The residual signal can be extracted by inserting the aforementioned model into the NMF-EM-based audio separation. Then, it is refined by the weighted parameters of the separation and reprojected onto the separated sources. Experimental results demonstrate that the proposed scheme (outlined above) is more stable and outperforms existing algorithms by, on average, 4.4 dB in terms of the source distortion ratio.
An improved and flexible matrix algorithm for solving interlinked separation problems which is based on the homotopy continuation method has been developed. A flexible model of the interlinked stream in standardized matrix form and JACOBIAN generation I algorithm for homotopy continuation are suggested. Also DOF analysis is performed for easy-understanding of equation based simulation of complex column systems. The Algorithm is tested on several problems of interlinked separation processes and some of results are documented.
Independent Component Analysis (ICA) is a blind source separation method using unsupervised learning and mutual information theory created in the late eighties and developed in the nineties. It has already succeeded in separating eye movement artifacts from human scalp EEG recording. Several characteristic sleep waves such as sleep spindle, K-complex, and positive occipital sharp transient of sleep (POSTS) can be recorded during sleep EEG recording. They are used as stage determining factors of sleep staging and might be reflections of unknown neural sources during sleep. We applied the ICA method to sleep EEG for sleep waves separation. Eighteen channel scalp longitudinal bipolar montage was used for the EEG recording. With the sampling rate of 256Hz, digital EEG data were converted into 18 by n matrix which was used as a original data matrix X. Independent source matrix U (18 by n) was obtained by independent component analysis method ($U=W{\timex}X$, where W is an 18 by 18 matrix obtained by ICA procedures). ICA was applied to the original EEG containing sleep spindle, K-complex, and POSTS. Among the 18 independent components, those containing characteristic shape of sleep waves could be identified. Each independent component was reconstructed into original montage by the product of inverse matrix of W (inv(W)) and U. The reconstructed EEG might be a separation of sleep waves without other components of original EEG matrix X. This result (might) demonstrates that characteristic sleep waves may be separated from original EEG of unknown mixed neural origins by the Independent Component Analysis (ICA) method.
본 논문은 블라인드 소스 분리 분야에서 널리 사용되는 멀티채널 비음수 행렬 분해 기법의 단점을 개선하여 미결정 복잡한 혼합 환경에서 문제를 해결한다. 공간 공분산 행렬에 기반을 둔 기존의 연구들에서, 단일 채널의 파워게인 및 상관관계와 같은 값으로 구성된 행렬의 각 요소는 높은 분산으로 인해 분리된 소스의 품질을 저하시키는 경향이 있다. 이 논문에서는 추정된 소스들을 효과적으로 클러스터링하기 위해 레벨 및 주파수 정규화를 수행한다. 따라서 새로운 공간 공분산 행렬 및 효과적인 클러스터 쌍별 거리함수를 제안한다. 본 논문에서는 제안된 행렬을 공간 모델의 초기화에 활용하여 공간 모델의 향상된 추정과 이를 바탕으로 상향식 접근법에서의 계층적 응집 클러스터링에 활용함으로써 분리된 음원의 품질을 향상시켰다. 제안된 알고리즘은 'Signal Separation Evaluation Campaign 2008 development dataset'을 활용하여 실험을 하였다. 그 결과 객관적인 소스 분리 품질 검증 도구인 'Blind Source Separation Eval toolbox'를 활용하여 대부분의 성능향상지표에서의 향상을 확인하였으며, 특히 대표적인 수치인 SDR의 1 dB ~ 3.5 dB 정도의 성능우위를 검증하였다.
A matrix pencil method for source separation 〔3〕was shown to be an unbiased signal extractor in the presence of temporally white noise. Its efficiency and robustness lies in the fact that the method in 〔3〕 employs only time-delayed correlation matrices of the observation data, In this paper we stress out that the matrix pencil method might suffer from a numerical instability problem, be- cause the symmetric-definite pencil was not exploited. Moreover we present a simple method of constructing a symmetric-definite pencil so that the matrix pencil method is numerically stable.
본 연구에서는 metal organic frameworks (MOFs)의 한 종류인 MIL-100(Fe)을 이용하여 혼합기질막(mixed matrix membranes, MMMs)을 제조하였다. MIL-100(Fe)의 함량을 고분자 대비 0~30 wt%까지 변화시키면서 첨가된 MOF의 함량에 따른 기체의 투과 특성을 살펴보았다. $H_2$, $CO_2$, $O_2$, $N_2$, $CH_4$의 기체 투과도는 MIL-100(Fe) 첨가량이 증가함에 따라 투과도가 증가하는 경향을 보여주었으며, 상대적으로 큰 입자크기를 가진 $SF_6$의 투과도는 MIL-100(Fe)의 첨가량이 증가함에 따라 투과도가 감소하였다. 이상 선택도는 $N_2/SF_6$의 경우 폴리이미드막 대비 약 40% 증가하였으며, 이를 통해 $N_2/SF_6$ 분리에 적합한 분리막임을 확인할 수 있었다.
본 논문에서는 각 음원이 시간적 구조를 가졌을 경우 음원들을 분리해내는 확률적 음원분리 방법을 제안한다. 이를 위해 각 음원의 시간적 구조를 가우시안 프로세스(Gaussian process)로 모델링하고 기존의 음원분리 문제를 유사-가능도 최대화 문제(pseudo-likelihood maximization)로 공식화한다. 본 알고리즘을 통해 얻어진 데이타의 유사-가능도는 정규 분포이며 이는 가우시안 프로세스 회귀방법(Gaussian process regression)을 통해 쉽게 계산이 가능하다. 음원분리의 역혼합 행렬은 경도(gradient) 기반최적화 기법을 통해 데이타의 유사-가능도를 최대화하는 해를 찾음으로써 구해진다. 여러 실험을 통하여 제안 알고리듬이 몇 가지 특정 상황에서 기존의 분리 알고리듬들에 비해 우수한 성능을 보임을 확인 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.