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ABSTRACT

A matrix pencil method for source separation [3] was shown to be
an unbiased signal extractor in the presence of temporally white
noise, Its efficiency and robustness lies in the fact that the method
in [3} employs only time-delayed correlation matrices of the ob-
servation data. In this paper we stress out that the matrix pen-
cil method might suffer from a numerical instability problem, be-
cause the symmetric-definite pencil was not exploited. Moreover
we present a simple method of constructing a symmetric-definite
pencil so that the matrix pencil method is numerically stable.

1. INTRODUCTION

Source separation is a fundamental problem that is encountered in
many applications such as digital/wireless communications, sig-
nal/image processing, speech processing, and biomedical signal
analysis where multiple sensors or multiple observation signals
are involved. See [10] for more details on source separation. In
the context of source separation, the m-dimensional observation
vector z(t) is assumed to be generated by

z(t) = As{t) + v(t), m

where A € R™*" is the unknown mixing matrix, s(t) is the
n-dimensional source vector and v(t) is additive white noise that
is statistically independent of 8(t). The task of source separation
is to estimate the mixing matrix A (or its inverse that is referred
to as a demixing matrix W = A¥ where # is the pseudoin-
verse), given only a finite number of observation data {®($)}, t =
1,...,N. It is well known that there exist two indeterminacies
such as ordering and scaling ambiguity. In other words, a feasible
solution to source separation problem boils down to estimating a
mixing matrix A such that a mapping from source vector to es-
timated source vector becomes transparent (i.e., W A becomes a
generalized permutation matrix).

It is known that second-order statistics (SOS) is sufficient for
successful source separation, provided sources have non-vanishing
temporal correlations or the variances of sources are slowly time-
varying (i.e., second-order nonstationary sources). Along this line,
various SOS-based source separation methods have been devel-
oped. These include AMUSE {15], Molgedey-Schuster [13], SOBI
[1], correlation matching {4, 7], matrix pencil method [3], and
SEONS [8,91.

Among these SOS-based source separation methods, a matrix
pencil method [3] employs only two time-delayed correlation ma-
trices to estimate the mixing matrix A in the presence of tempo-
rally white noise. In such a case, the matrix pencil method was
shown to be an unbiased signal extractor. In fact, the matrix pen-
cil method generalizes AMUSE where one equal-time correlation

matrix and one time-delayed correlation matrix were used. Inde-
pendently a similar idea was also proposed in [6, 5]. One critical
problem that was not recognized in [3] is that the matrix pencil
method might suffer from a numerical instability problem in the
calculation of the generalized eigenvectors, because the pencil is
not a symmetric-definite pencil. In general, a time-delayed corre-
lation matrix is not positive definite, which might cause a serious
problem in the task of source separation. In this paper, I stress
out the importance of the symmetric-definite pencil and discuss a
simple method of constructing a symmetric-definite pencil.

As in [3] we consider the data model (1) which satisfies the
following assumptions: :

o Source signals are assumed to be spatially uncorrelated but
to have non-vanishing temporal correlations, i.e.,

E{S(t)ST(t - T)} = dlag {71 (T)1 T :711(7-)}} )
where E denotes the statistical expectation operator.

e Additive noises {vi(t)} are assumed to be spatially corre-
lated but temporally white, i.e.,

E{v(t)v(t — )} = 6- Z, )

where &, is the Kronecker delta and X is an arbitrary n x n
matrix.

2. SOS-BASED SOURCE SEPARATION

This section briefly reviews a main idea of SOS-based source sep-
aration methods. For the moment, the noise is assumed to be i.i.d.
isotropic Gaussian process, i.e., the covariance matrix of noise vec-
tor v(t) has the form

R,(0) = E{v(t)v" (1)} = 021 m, @

where F denotes the statistical expectation operator, I, is the mx
m identity matrix, and o2 is the noise variance.
The correlation matrices of the observation vector x(t) satisfy

R:(0)~olln = AR,(0)A", (5)
R.(r) = AR,(1)AT, (6)

for some non-zero time-lag 7 and both Rs(0) and R, (7) are di-
agonal matrices since sources are assumed to be spatially uncor-
related. In the case of overdetermined mixtures (m > n), the
noise variance o can be estimated from the least singular value of
R (0) (or the average of minor m - n singular values of R, (0)).
However such an estimate of noise variance is not reliable or is
difficult to calculate when signal to noise ratio (SNR) is low or the
variance of each sensor noise is different.
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Denote R;(0) = R.(0) — 02I,,. Then the pseudo-inverse
of the mixing matrix, A% can be identified up to its re-scaled and
permuted version by the simultaneous diagonalization of R (0)
and R (r), provided that R; ' (0) R, (r) has distinct diagonal el-
ements. In fact, this is the main idea of AMUSE {15] that was
motivated by FOBI [2]. This fundamental result is described in
the following theorem

Theorem 1 Let A1, Dy € R™*™ be diagonal matrices with pos-
itive diagonal entries and Az, D2 € R™*" be diagonal matrices
with non-zero diagonal entries. Suppose that G € R™™™ satisfies
the following decompositions:

D,
D,

i

GAGT, 0
GAGT. ®)

Then the matrix G is the generalized permutation matrix, i.e., G =
PA if DT D, and A7* A2 have distinct diagonal entries.

Proof: See [9] for proof.

2.1. Simultaneous Diagonalization

In general we can find a linear transformation which simultane-
ously diagonalizes two symmetric matrices. For the sake of sim-
plicity, the simultaneous diagonalization is explained in the case
of m = n and noise-free mixtures. Thus we deal with R (0) and
R (7). The simultaneous diagonalization consists of two steps
(whitening followed by an unitary transformation):

(1) First, the matrix R (0) is whitened by
2(t) = DT *UTa(), ©)

where D; and U, are the eigenvalue and eigenvector ma-
trices of R.(0) as

R.(0) =U,D\UT. (10)
Then we have

~1 T _%

D] 2UTR.(0)U.\D, ? = I,
~1 ~1

D[ ?UTR.(r)U,D; 2.

R, (0)
R, (7)

(2) Second, a unitary transformation is applied to diagonalize
the matrix R, (7). The eigen-decomposition of R, (7) has
the form

R.(r) = U.D:UT. an

Then y(t) = U7 z(t) satisfies
R,(0)
Ry(7)

UTR.(O)U; = I,
UTR.(T)Uq = Da.

Thus both matrices R;(0) and R.(7) are simultaneously diago-
-1
nalized by a linear transform W = U ng 2yT. It follows from

-1
Theorem 1 that W = U3 D, 2UT is a valid demixing matrix if
all the diagonal elements of D are distinct.

2.2. Generalized Eigenvalue Problem

The simultaneous diagonalization of two symmetric matrices can
be carried out without going through two-step procedures. From
the discussion in Section 2.1, we have

WR.(OWT I, (12)
WR. (W' = D, . (13)

The linear transformation W which satisfies (12) and (13) is the
eigenvector matrix of R; ' (0) R (7) [11]. In other words, the ma-
trix W is the generalized eigenvector matrix of the pencil R (7)—
AR:(0) [13].

3. SYMMETRIC-DEFINITE PENCILS

Recently Chang et al. proposed the matrix pencil method for BSS
{3] where they exploited Rz(71) and R (72) for 1 # 12 # 0.
Since the noise vector was assumed to be temporally white, two
matrices R (71) and R.(r;) are not theoretically affected by the
noise vector, i.e.,

R.(r) = E{z(t)z"(t — 1)} = AR,(r)AT, forT #0. (14)

Let us consider two different time-delayed correlation matrices

(form # 7 #0)

Ri = R.(n)=AAAT, (15)
R: = Ru(m)=AAAT, (16)
where
A1 = RS (Tl) = diag{’yl (Tl)) e ’7’"(7'1)}, (17)
Ay, = R(rz) =diag{vi(72),. .., m(m2)}. (18)

It was shown in [3] that the demixing matrix W = A~! could
be estimated by solving the generalized eigenvalue problem

RoU = R:Udiag {\1, ..., \n}. (19)

It leads to W = U7, provided that {Ai = E,‘fﬁ(%} are distinct.
Note that (19) is identical to the problem

R'R.U =UA, (20

which gives an LS-ESPRIT solution (see [3] for more details).
This approach produces an estimate of the demixing matrix that
is not sensitive to additive white noise and gives an closed-form
solution. Unfortunately, however, this approach might have a nu-
merical instability problem in the calculation of U since in general
R — AR, is not a symmetric-definite pencil

The set of all matrices of the form Rz — AR with A € R is
said to be a pencil. Frequently we encounter into the case where
R; is symmetric and R, is symmetric and positive definite. Pen-
cils of this variety are referred to as symmetric-definite pencils
[12].

Theorem 2 (pp. 468 in [12]) If Rz — AR, is symmetric-definite,

then there exists a nonsingular matrix U = [u1,...,u,] such
that
UTRIU = diag {71(71),...,m({n)}, @n
UTRU = diag{7i(r2),..., 1m(m2)}. 22)
Moreover Rau; = MiRiu; fori=1,...,n,and \; = :—y"—g—f%

1828
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For the requirement of symmetry, we replace Ry and R; by
M and M, that are defined by

M, = %{R1+RT}, 23)

M, = %{aﬁag}. 24)
Either M1 or M, should be positive definite. Depending
on the choice of the time-lag 71, the matrix M1 can be negative
definite. In order to avoid this, we consider a linear combination
of time-delayed correlation matrices such that the combination is
positive definite.
Denote

J
¢ = Y aM.(n), 25)

=1

for J > 2.

We find a set of coefficients, {c:}, such that the matrix C,
is positive definite. Thus, the pencil M; — AC} is symmetric-
definite, so the generalized eigenvector matrix U that solves

M2U= C1Udiag{/\1,...,/\n}, (26)

can be computed with a numerical problem. A simple modification
of the matrix pencil method is done by replacing R, and R: by
C'{ and M, for three methods (GED, LS-ESPRIT, TLS-ESPRIT)
in [3]. A way of finding a set of coefficients, {a;}, such that
the matrix C'; is positive definite, is summarized below. In fact,
this method was motivated by the finite step global convergence
(FSGC) algorithm [14] that was originally developed for different

purpose.
Algorithm Qutline: Finding a positive definite C

1. Estimate time-delayed correlation matrices and construct
an m x mJ matrix
M ={Mqz(n)- - M(75)} n

Then compute the singular value decomposition (SVD) of
M, ie.,

M=UsVT, (28)

where U € R™ ™ and V € R™ *™ are orthogonal
matrices, and 3 has nonzero entries at (¢, 1) position (2 =
1,...,n) and zeros elsewhere. The number of sources, n
can be detected by inspecting the singular values. Define
U,by

Us = [u1 - un), (29)

where w; is the ith column vector of the matrix U and n <
m.

2. Fori=1,...,J, compute
Fq‘, = U_gTMz(Ti)U.Ah (30)

3. Choose any initial @ = [a1 - - - ay]7.
4. Compute

J
F = Za.'Fi. @31

=1

5. Compute a Schur decomposition of F' and check if F is
positive definite or not. If F' is positive definite, the algo-
rithm is terminated. Otherwise, go to Step 6.

6. Choose an eigenvector u corresponding to the smallest eigen-
value of F and update o via replacing « by o + § where

_ [W'Fiu--- 'u.TFJu]T

T T Fru- - uTFoal|”

8 (32)

Go to step 4. This loop is terminated in a finite number of

steps (see [14] for proof).
7. Compute
J
C =3 aiM.(r), (33)
1=1

and perform an eigenvalue-decomposition of C,
D, T
C = [Ucl, Uc2] [ o ] [Ucl, Uc?] (34)

where U ; contains the eigenvectors associated with n prin-
cipal singular values of D;.

8. The robust whitening transformation is performed by
z(t) = Qz(¢), (35)

-1
where @ = D, *UT,.

Note: In the case of m = n (equal number of sources and sensors),
step 1 and 2 are not necessary. Simply we let F'; = M. (7;).

Our algorithm, which is be called “extended matrix pencil
method”, is summarized below.

Algorithm Qutline: Extended Matrix Pencil Method

1. Compute M ;(72) for some time-lag 72 # 0 and calculate
the matrix C1 = Y_7_, @i M (7:) by the FSGC method.

2. Find the generalized eigenvector matrix V' of the pencil
M (72) — AC, which satisfies

M. (m)V = C1VA. (36)

3. The demixing matrix is given by W = V7T,

4. A NUMERICAL EXAMPLE

A numerical experiment was performed using MATLAB. We used
three digitized voice signals and two music signals (all of which
were sampled at 8 kHz), then generated 5-dimensional mixture
vector by a randomly generated mixing matrix A. Spatially coire-
tated but temporally white noise was added in the level of SNR 10
dB. In the matrix pencil method, we used M ;(11) and M ,(15)
to estimate the mixing matrix. In such a case, the demixing matrix
W using the matrix pencil method [3] came up with a complex-
valued matrix due to a numerical instability problem. Two eigen-
values of R; ' (11) R (15) were complex conjugate.

‘We applied the extended matrix pencil based on symmetric-
definite pencil to the same data set. In order to construct a symmetric-
definite pencil, we found a linear combination C'; = 211;1 a; M (1)
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such that C' is positive definite. We used C; and M ;(15) to es-
timate the demixing matrix. Then the result was very successful,
the global system matrix G = W A was

—-0.001 0.0052 0.009 0.018 0.760
—0.042 0.030 -0.207 1.113 0.011
G={ -0406 -0.011 -0.010 -0.001 -0.003
0.021 -0.106 -1.317 -0.178 0.003
0.010 —-0.301 0.029 0.018 -0.001

One can easily see that the matrix G has one dominant value in
each row and column, which states that the separation is success-
ful.

S. DISCUSSION

We have pointed out that the matrix pencil method {3] might suf-
fer from a numerical instability problem because the generalized
eigenvalue problem generally requires the symmetric-definite pen-
cil. We have presented a simple method, extended matrix pencil
method, where a symmetric-definite pencil was employed. Numer-
ical experiments confirmed the high performance of the proposed
method. The extended matrix pencil method can be also applied
to blind separation of nonstationary sources.
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