• Title/Summary/Keyword: Matrix rank

Search Result 244, Processing Time 0.023 seconds

A COMPARISON OF MAXIMAL COLUMN RANKS OF MATRICES OVER RELATED SEMIRINGS

  • Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.213-225
    • /
    • 1997
  • Let A be a real $m \times n$ matrix. The column rank of A is the dimension of the column space of A and the maximal column rank of A is defined as the maximal number of linearly independent columns of A. It is wekk known that the column rank is the maximal column rank in this situation.

  • PDF

Spanning column rank 1 spaces of nonnegative matrices

  • Song, Seok-Zun;Cheong, Gi-Sang;Lee, Gwang-Yeon
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.849-856
    • /
    • 1995
  • There are some papers on structure theorems for the spaces of matrices over certain semirings. Beasley, Gregory and Pullman [1] obtained characterizations of semiring rank 1 matrices over certain semirings of the nonnegative reals. Beasley and Pullman [2] also obtained the structure theorems of Boolean rank 1 spaces. Since the semiring rank of a matrix differs from the column rank of it in general, we consider a structure theorem for semiring rank in [1] in view of column rank.

  • PDF

HIGHER ORDER ITERATIONS FOR MOORE-PENROSE INVERSES

  • Srivastava, Shwetabh;Gupta, D.K.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.171-184
    • /
    • 2014
  • A higher order iterative method to compute the Moore-Penrose inverses of arbitrary matrices using only the Penrose equation (ii) is developed by extending the iterative method described in [1]. Convergence properties as well as the error estimates of the method are studied. The efficacy of the method is demonstrated by working out four numerical examples, two involving a full rank matrix and an ill-conditioned Hilbert matrix, whereas, the other two involving randomly generated full rank and rank deficient matrices. The performance measures are the number of iterations and CPU time in seconds used by the method. It is observed that the number of iterations always decreases as expected and the CPU time first decreases gradually and then increases with the increase of the order of the method for all examples considered.

ADDITIVE OPERATORS PRESERVING RANK-ADDITIVITY ON SYMMETRY MATRIX SPACES

  • Tang, Xiao-Min;Cao, Chong-Guang
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.115-122
    • /
    • 2004
  • We characterize the additive operators preserving rank-additivity on symmetry matrix spaces. Let $S_{n}(F)$ be the space of all $n\;\times\;n$ symmetry matrices over a field F with 2, $3\;\in\;F^{*}$, then T is an additive injective operator preserving rank-additivity on $S_{n}(F)$ if and only if there exists an invertible matrix $U\;\in\;M_n(F)$ and an injective field homomorphism $\phi$ of F to itself such that $T(X)\;=\;cUX{\phi}U^{T},\;\forallX\;=\;(x_{ij)\;\in\;S_n(F)$ where $c\;\in;F^{*},\;X^{\phi}\;=\;(\phi(x_{ij}))$. As applications, we determine the additive operators preserving minus-order on $S_{n}(F)$ over the field F.

Linear Preservers of Perimeters of Nonnegative Real Matrices

  • Song, Seok-Zun;Kang, Kyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.465-472
    • /
    • 2008
  • For a nonnegative real matrix A of rank 1, A can be factored as $ab^t$ for some vectors a and b. The perimeter of A is the number of nonzero entries in both a and b. If B is a matrix of rank k, then B is the sum of k matrices of rank 1. The perimeter of B is the minimum of the sums of perimeters of k matrices of rank 1, where the minimum is taken over all possible rank-1 decompositions of B. In this paper, we obtain characterizations of the linear operators which preserve perimeters 2 and k for some $k\geq4$. That is, a linear operator T preserves perimeters 2 and $k(\geq4)$ if and only if it has the form T(A) = UAV or T(A) = $UA^tV$ with some invertible matrices U and V.

How to Characterize Equalities for the Generalized Inverse $A^{(2)}_{T,S}$ of a Matrix

  • LIU, YONGHUI
    • Kyungpook Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.605-616
    • /
    • 2003
  • In this paper, some rank equalities related to generalized inverses $A^{(2)}_{T,S}$ of a matrix are presented. As applications, a variety of rank equalities related to the M-P inverse, the Drazin inverse, the group inverse, the weighted M-P inverse, the Bott-Duffin inverse and the generalized Bott-Duffin inverse are established.

  • PDF

EXTREME PRESERVERS OF RANK INEQUALITIES OF BOOLEAN MATRIX SUMS

  • Song, Seok-Zun;Jun, Young-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.643-652
    • /
    • 2008
  • We construct the sets of Boolean matrix pairs, which are naturally occurred at the extreme cases for the Boolean rank inequalities relative to the sums and difference of two Boolean matrices or compared between their Boolean ranks and their real ranks. For these sets, we consider the linear operators that preserve them. We characterize those linear operators as T(X) = PXQ or $T(X)\;=\;PX^tQ$ with appropriate invertible Boolean matrices P and Q.

  • PDF

LINEAR OPERATORS THAT PRESERVE PERIMETERS OF BOOLEAN MATRICES

  • Song, Seok-Zun;Kang, Kyung-Tae;Shin, Hang-Kyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.355-363
    • /
    • 2008
  • For a Boolean rank 1 matrix $A=ab^t$, we define the perimeter of A as the number of nonzero entries in both a and b. The perimeter of an $m{\times}n$ Boolean matrix A is the minimum of the perimeters of the rank-1 decompositions of A. In this article we characterize the linear operators that preserve the perimeters of Boolean matrices.

Consistency Check of a House of Quality Chart by Limiting Probability Concept and Median Rank (극한확률의 개념과 Median Rank를 이용한 HOQ 도표의 일관성 검정)

  • Won, Yu-Woong;Kim, Ki-Young;Yun, Deok-Kyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.22-29
    • /
    • 2010
  • Six sigma has been the most influential management innovation tool in order to achieve the customer's satisfaction and keep the competition in the age of limitless competition. The success in six sigma is to find the correct CTQ (Critical to Quality). QFD (Quality function deployment) is the efficient too ever created to tie product and service design decisions directly to customer wants and needs. One of the mistakes in QFD is to analyze using an inconsistent HOQ (House of quality) chart. An inconsistent HOQ chart is one in which the information from the correlation matrix is inconsistent with that from the relationship matrix. This study presents the consistency check and inconsistency check in case of failing the consistency check. Also we propose the procedures using the Limiting Probability in correlation matrix and the Median Rank in relationship matrix in order to be consistent in HOQ chart.