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| EXTREME PRESERVERS OF RANK INEQUALITIES OF
BOOLEAN MATRIX SUMS
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ABSTRACT. We construct the sets of Boolean matrix pairs, which are natu-
rally occurred at the extreme cases for the Boolean rank inequalities relative
to the sums and difference of two Boolean matrices or compared between
their Boolean ranks and their real ranks. For these sets, we consider the
linear operators that preserve them. We characterize those linear operators

as T(X) = PXQor T(X) = PX‘Q with appropriate 1nvert1ble Boolean
matrices P and Q. |
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1. Introduction

A semiring S consists of a set S and two binary operations, addition and
multiplication, such that: (1) S is a monoid under addition (identity denoted by
0); (2) S is a semigroup under multiplication (identity, if any, denoted by 1); (3)
multiplication is distributive over addition on both sides; (4) s0 = 0s = 0 for all
s €S. | - S

A semiring is called antinegative if the zero element is the only element with an
additive inverse. For example, the set of nonnegative 1ntegers is an antmegatlve
semiring with usual addition and multiplication. - -

A semiring S is called Boolean if S is equivalent to a set of subsets of a given
set NV, the sum of two subsets is their union, and the product is their intersection.
The zero element is the empty set and the identity element is the whole set V.

It is straightforward to see that a Boolean semiring is commutative and anti-
negative. If B consists of only the empty subset and N then it is called a binary
Boolean algebra (or {0, 1}-semiring) and is denoted by B.
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Let M, »(B) denote the set of m x n matrices with entries from the binary
Boolean algebra B. Matrix theory over semirings is an object of intensive study
during the last decades, see for example [5, 6] and references therein. In par-
ticular, many authors have investigated various rank functions for matrices over
Boolean algebra and their properties, see [1, 9, 10, 13]. Among the rank func-
tions that have the most interesting a.pphca.tlons is-the well-known notion of the
factor rank. S s

Let M, »(B) be the set of mxn Boolean matrlces Throughout we assume
that m < n. The matrix I, is the n x n identity matrix, J, , is the m X n
matrix of all ones, O, ,, is the m x n zero matrix. We omit the subscripts when
the order is obvious from the context and we write I, J, and O, respectively.
The matrix E; ;, called a cell, denotes the matrix with exactly 1, that being a 1
in the (7, 7) entry. Let R; denote the matrix whose i*P row is all ones and is zero
elsewhere, and C; denote the matrix whose j*" column is all ones and is zero
elsewhere. We let |A| denote the number of nonzero entries in the matrix A.

The matrix A € M, »,(B) is said to be of Boolean rank k (rg(A) = k) if there
exist matrices B € M,, x(B) and C € M ,(B) such that A = BC and k is the
smallest positive integer such that such a factorization exists. By definition the
only matrix with Boolean rank equal to 0 is the zero matrix, O.

If B is considered as a subsemiring of a real field R then there is a real rank
function p(A) for any Boolean matrix A € M, »(B).

Example 1.1. Let

1 0
1 1 '

0 1 - M4,4 (B)
0 0

e =
-0 O -

‘Then 7p (A) = 4 from Example 2.3.1 [4]. But p(A) = 3

The above example shows that the Boolean rank and real rank of A are not
equal. However, the inequality rg(A) > p(A) always holds. o
The behavior of the function p W1th respect to matrix addltlon is given by
the followmg inequalities: |
The rank-sum inequalities:

| o(A) ~ p(B) I< plA + B) < p(A) + p(B);

where A, B are real matrices (see [7]).

| Arlthmetlc properties of Boolean rank is restricted by the following list of in-
equalities established from [3] because Boolean algebra is antinegative semiring.
For Boolean matrices A and B € M, »(B). |

()re(A+ B) <rp(A) +ra(B);
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TB (A) if B=0O
2)rg(A+B)>< rg(B) if A=0
1 if A#QOand B 76 0,
If B is considered as a subsemiring of ®*, the nonnegative real numbers, we
have:

(3) rB(A+ B) > |p(A) — p(B)|, for A and B € M, (B).

As was proved in 3] the inequalities 1 ~ 3 are sharp and the best possible.

The natural question is to characterize the equality cases in the above in-
equalities. Even over fields this is an open problem, see (2] for more details. In
section 2, we present the concrete sets of matrix pairs which come from the the
extreme cases of the inequalities of Boolean ranks.

In section 3 to 5, we characterize the linear operators that preserve the sets

of matrix pairs which come from the the extreme cases of the inequalities of
Boolean ranks.

2. Preliminaries

Let B be the binary Boolean algebra. Consider following notation in order to

denote sets of Boolean matrices that arise as extremal cases in the mequahtles
listed above: |

S (B) = {(X_, Y) € M n(B)? | rp(X +Y) =ra(X) + ?rB(Y)}; -
Sy (B) = {(x, Y) € Mm o(B)? | r5(X +Y) = 1};

S3(B) = {(X,Y) € My n(B)? | r5(X +Y) =r5(X)};
We say an operator, T, preserves a set P if X € P implies that T'(X) € P, or,
if P is a set of ordered pairs [triples], that (X, Y)eP [(X Y, Z)] € ]P’] implies

(T(X),T(Y)) € P [(T(X),T(Y),T(2)) €
An operator T strongly preserves the set P 1f X € Pif and only if T(X ) E P,
or, if P is a set of ordered pairs [triples], that (X ,Y)eP [(X Y, Z) € ] if and

only if (T(X), T(Y)) € P [(T(X), T(Y),T(2)) € P| .

An operator T : My, »(B) — M, ,(B) is called a (P, Q)-operator if there eXISt
permutation matrices P and @Q of appropriate orders such that T'(X) = PXQ
for all X € My, »(B), or, if m = n, T(X) = PX'Q for all X € M, n(IB) where
X' denotes the transpose of X. _.

A mapping T : M, »(B) — My, (B) is called a Boolean linear operator if
T(Omn) =Omnand T(X+Y)=T(X)+T(Y) for all X,Y € My, »(B).

A matrix A € M, ,(B) is called monomial if it has exactly one nonzero
element in each row and column. | |

A line of a matrix A is a row or a column of the matrix A.
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We say that a matrix A dominates a matrix B if b; ; # 0 implies that a; ; # 0,
and we write A > B or B < A. |
If A and B are Boolean matrices and A > B we let A\B denote the matrix

C where
- 0 lf bi,j =1
%I U1 ifb,; =0

The matrix X oY denotes the Hadamard or Schur product, i.e., the (z,7)
entry of XoY is z; v ;.

Lemma 2.1. Let A = (a; ;) € My, ,(B) where m,n > 2. Let (1,k) be any fized
pair of integers such that 2 < k < n, 2 <[ < m. Assume that Boolean rank
of each | x k-submatriz of A is 1. Then the Boolean rank of each (I + 1) x k-
- submatriz (if any) is 1 and the Boolean rank of each | x (k + 1)-submatriz (if
any) is 1.

Proof.. Let us consider any [ X (k + 1)-submatrix of the matrix A. Applying
a permutation of rows and columns, if necessary, it is possible to assume that
this submatrix has the form A’ = (a; ;), where 1 <: <[, 1< j <k+ 1. Let us
denote A; = (a; ), where 1 < <1{,1<j <k, Ay = (a;;), where 1 <1 <,
2 < j < k+ 1. By conditions, there are four vectors s = (s;,...,8) € B,
t = (t1,...,t) € BX, u = (uy,...,u) € B, v = (vy,...,u) € B* such that
Al = s*t and Ag =ulv.

Consider the matrix A” = s* (¢1,t3,...,tk, u1vx). Let us check that A’ = A”.
The first £ columns of these two matrlces are equal by definitions of vectors s
and t. Consider the last column.

We have

n — .UV 0 ifS-{,:O
Zk+1 i1k = U1V% if 3,;=].

) If 8; = 0 y Al k41 = U1V = Sztk.*_l = 0.
i) If 8; =1, @i k+1 = Uik = Uy Vk.
( For all i, }, szt = UV 1 and s; = 1, then t = UVj—1. That i is,

ie., u1vj— 1= = u;vj—1 for arbitrary 7. Thus ujve = u;vk).
Thus k41 = Gik+1, and hence A' = A", Thus rg(A’') = 1. Similar consid-
erations with an ({ + 1) x k-matrix conclude the proof. | | O

We have the following two cordllaries from Lemma 2.1.

Corollary 2.2. Let A = (a; ;) € My, o(B) where m,n > 2. Let rg(A’) =1 for
any 2 x 2-submatriz A’ of A. Then rg(A) =1.

Corollary 2.3. Let A = (a;;) € M n(B) where m,n > 2. Let rg(A) > 1.
Then there exists a 2 X 2-submatriz of A of Boolean rank 2.
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Proof. By Corollary 2.2. L]

The following theorem implies the characterizations of the surJectlve linear
operator on M,, ,(B).

Theorem 2.4. LetT : My, ,(B) — M, »(B) be a Boolean linear operator. Then
the following are equivalent: '- |

(1) T is bijective.

(2) T is surjective.

(3) There exists a permutation o on {(i,7) |1=1,2,--- ,m;7=1,2,--- ,n}
such that T(Ei,j) = Ecr(i,j)o

Proof. That 1) implies 2) and 3) implies 1) is straight forward. We now show
that 2) implies 3). |

We assume that T is surjective. Then, for any pair (¢, j), there exists some
X such that T(X) = E; ;. Clearly X # O by the linearity of T. Thus there is
a. pair of indices (r,s) such that X = E, ; + X’ where (r, s) entry of X’ is zero
and T'(E;,,s) # O. Indeed, if T(E, ;) = O for all pairs (r,s), then T(X) = O by
linearity of T. Thus we have a contradiction. But T'(X) = E; ; # O. Hence

T(Er,s) < T(Er,S) T T(X \ (ET,S)) — T(X). = Ei,j'

That is, T(Ers) < Ei; and T(E,,) = E;,. Since the set {(z', ) li=

,2,---,m;j=12,--- ,n} is a finite set, T is injective since it is surjective.

Therefore there is some permutation ¢ on {G,7) | + = 1,2, ,m;J
1, 2, st _,Tl} such that T(Ei’j) = Ea(i,j)°

O

- Henceforth we will always assume that m,n > 2.

Lemma 2.5. Let T : M,, ,(B) — M, »(B) be a Boolean operator which maps
lines to lines and is defined by T'(E; ;) = E,(: j), where o is a permutation on
the set {(i,7) |1 =1,2,--- ,m;j=1,2,--- ,n}. Then T is a (P,Q)-operator.

Proof. Since no combination of a rows and b columns can dominate J where
a+b=m unless b = 0 (or if m = n, if a = 0) we have that either the image
of each row is a row and the image of each column is a column, or m = n
and the image of each row is a column and the image of each column is a row.
Thus, there are permutation matrices P and Q such that T(R;) < PR;Q and
T(C;) < PC;Q or, if m =n, T(R;) < P(R;)'!Q and T(C;) < P(C;)*Q. Since
each cell hes in the intersection of a row and a column and T maps nonzero
cells to nonzero (weighted) cells, it follows that T(E; ;)= PE,; ;Q, or,if m =n,

(zJ)_PEJzQ P( )Q | L]

Lemma 2.6. If T(X) = XoA for all X € M,, ,(B) and rg(A) = 1, then there
exist diagonal matrices D and E such that T(X) = DXE for all X € My, n(B).
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Proof. If rg(A) = 1, then there exist vectors d = [d1,d2, -+ ,dm] and € =
le1, €2, , €s) such that A = d'& or a;; = die;. Let D = diag{d1,da," - ,dm}
and E = diag{ei,ez, - ,en}. Now the (7,j) entry of T(X) is z; ja; ; and the
(¢,7) entry of DX E is d;x; je; = diejz; j = a; ;T; ;. Thus the lemma follows. [J

3. Linear preservers of S;(B).
Recall that
$1(B) = {(X,Y) € M n(B)? | r5(X +Y) = r5(X) + 75(Y)};

We begin with some general observations on Boolean linear operators of spe-
cial types that preserve S (B).

Lemma 3.1. Let o be a permutation of the set {(i, ) | 1<i<m1<j<n},
and T : M n(B) — Mm,(B) be defined by T(Ei;) = E,) ,8=1,-- ,m;j =
1,---,n . If T preserves S;(B), then T is a (P, Q)-operator.

Proof. Consider the action of T' on rows and columns of a matrix. Suppose
that the image of two cells are in the same line, but the cells are not, say
E,F then rg(E+ F) = 2. If rg(T(E + F)) = 1, then (E,F) € S;(B) but
(T(E), T(F)) ¢ S1(B). Then T does not preserve S; (B) which is a contradiction.
Thus T maps lines to lines. By Lemma 2.5 T is a (P, Q))-operator. O

Theorem 3.2. Let T : My, o(B) — M,, »(B) be a surjective Boolean linear
operator. Then T' preserves S1(B) if and only if T is a (P, Q)- opemtor

Proof It is easy to see that multiplication with invertible matrices preserves
Boolean rank, since permutation matrices are the only invertible Boolean ma-
trices [9]. Hence (P, Q)-operator preserve the Boolean rank. For arbitrary
(X,Y) € 5:1(B), | o -- o R
L re(T(X) + T(Y)) = ?‘B( (X+Y)=r(P(X+Y)Q)=rg(X+Y)
= T‘B(X) +rg(Y)=r5(PXQ)+rg(PYQ) = 'rB(T(X.)_) + rg(T(Y)).
Thus (T(X), T(Y)) € S;:(B) and T preserves S;(B).
- Conversely, if T is surjective then by Theorem 2.4 we have that T is defined by
a permutation o-ontheset {(i,75) |1 <i<m,1 <j<n}. ie, T(E;;) = Eq,j)-
- By Lemma 3.1 we have that T is a (P, @)-operator since T preservesS; (B). O

‘Over a binary Boolean algebra the assumption of surjectlvmy from the previ-
ous theorem can be replaced with the assumption that T i is a strong preserver

Theorem 3.3. Let T : M, ,(B) — M, »(B) be a Boolean lznea'r opemto'r tha,t
strongly preserves Sy (B). Then T is a (P, Q)-operator. | |

Proof. It is proved in [4] that for a binary Boolea.n algebra there is a power of T
which is idempotent. Thus only finite set of different matrices can: be obtained
by considering the powers of the matrix A. Hence, there are integers s and ¢
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such that for all p,¢ > s, p = g(mod1) it holds that A7 = Al Thus Ast = A%t
Hence for a certain power of any Boolean linear operator on binary Boolean
algebra is idempotent. In both cases we denote L = T¢ and L? = L. One can
easily check that L strongly preserves S; (B).

If X € M, n»(B) and (X, X) € S;(B) then rg(X + X) = rp(X) + ra(X).
Therefore rg(X) =0and X = O.

Thus, if A # O, then we have that (A, A) é S1(B). Then (L(A), L(A)) ¢
51(B). |

That is, rg(L(A)) + re(L(A)) # r(L(A)). i.e.L(A) # O.

We examine the action of L on rows and columns. Suppose that L(R;) is
not dominated by R;. Then there is some (r,s) such that E.; < L(R;) while
E.s £ R;. Then we have that (R;, E.;) € S;(B) and there exists a matrix
X = (z;;) € My n(B) with z, s = 0 such that L(R;) = E,, + X . Now,

L(R; + Ers) = L(R:) + L(Ers) = L(L(R:)) + L(E-,s)
= L((Eys + X)) + L(E; s) = L(X) + L(E; ) + L(E;s)
= L(X)+ L(E,;) = L(X + E, ;) = L(L(R:)) = L(R;).
Now, (R;, Frs) € S1(B) but,
L(R:) + L(E,s) = L(R; + E,s) = L(R:)

and hence, (L(R;), L(E,;)) ¢ S;(B), a contradiction. |

We have established that L(R;) < R; for all . Similarly, L(C;) < Cj for
all j. By considering that E; ; is dominated by both R; and C; we have that
L(E; ;) < E; ;. Since B is a binary Boolean algebra, we have that T" also maps
a cell to a cell, or |T'(E; ;)| = 1 for all 4, j, and T'(J) has all nonzero entries.

So T induces a permutation &, on the set of subscripts {1,2,--- ,m} x {1,2,

© T}

That is, T'(F; ;) = Ed(z-;j). Since T induces a permutation o, on the set of
subscripts {1,2,---,m} x {1,2,---,n} and T preserve S; (B). |
By Lemma 3.1 we have that T is a (P, Q)-operator. | . O]

4. Linear preservers of S;(B).

Recall that | | - | |
S2(B) = {(X,Y) € Mpnn(B)? | r5(X +Y) = 1};

Theorem 4.1. Let T : M, n(B) — M, »(B) be a surjective Boolean linear
operator. Then T preserves So(B) if and only if T is a (P, Q)-operator.

Proof. Let T be a (P, Q)-operator. For (X,Y) € Sz(B),
l=rg(X+Y)=rg(P(X+Y)Q)=rg(T(X+Y))=rg(T(X)+T(Y)).
Hence (T(X),T(Y)) € S3(B). That is, T preserves Sz (B). | |
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Conversely, assume that T preserves Sa(B). Hence if T is surjective and B is
a binary Boolean algebra then by Theorem 2.4 we have that T'(E; ;) = E,(;,5) -
It is easy to see that the cells F;; and E, ; are in the same line if and only if
rg(E;; + Ers) = 1if and only if (E; ;, Ers) € S2(B). Since T preserves Sg(]B)
if (E; ;, Ers) € S2(B), then

(T(E;;), T(Ers)) €Sq (]B)
That is, |
r(T(E;;)+T(E,;)) = 1.
Therefore T(E; ;) and T(E, ;) are in the same line. Thus lines are mapped
to lines, and we have that T is a (P, Q)-operator by Lemma 2.5. O

We have another characterization of the linear operators that preserve S;(B).

Theorem 4.2, Let T : My, n(B) — M n(B) be a Boolean linear operator that
preserves So(B). Then these are equivalent : |

(1) T is surjective

(2) T strongly preserves So(B)

(3) T is a (P, Q)-operator.

Proof. 3) implies 1) : For any A € M,, »(B), take PtAQ* € M, »,(B). Then
T(PLAQY) = P(PtAQYQ = A. |
3) implies 2) : For any (X,Y) € Sz2(B), R
1= r5(X +Y) =rg(P(X +Y)Q) = ra(T(X + Y)) = rg(T(X) + T(Y)).

1) implies 3) : From Theorem 4.1, we have done. .

2) implies 1) : Suppose that T strongly preserves S3(B). In order to prove this
it suffices to check that for each pair of indices (3, ) there exist Y € M, ,(B)
such that T(Y) = E, ;. Assume that this is not the case. Then T'(J) < J.
That is there exists a Boolean matrix N such that n,; = 0 for some (r s) and
T(N)>T(J). Hence T(J\E, ) = T(J).

One has that (J\E,s, J\E,;) ¢ Sa(B) since rank(J\E,s) # 1. While
(J,J) € S2(B), since rg(J) = 1. Hence, (T(J\Ers), T(J\Ers)) ¢ S2(B) while
(T'(J),T(J)) € S2(B), a contradiction with T(J) = T(J\E, ;). Thus there is no
such a matrix N with a zero entry such that T(N) > T(J). It follows that the
image of a cell dominates only one cell. Thus T is surjective on M, ,(B). [

5. Linear preservers of Sg(IB).
Recall that - |
- Su(B) = {(X,Y) € Mnn(B)* | ra(X +Y) =r5(X) }

Theorem 5.1. Let T : My, »,(B) — M,, ,(B) be a surjective Boolean linear
operator. Then T preserves Sz(B) if and only if T is a (P, Q)-operator.
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Proof. One can easily see that (P, Q)-operators preserve the set Sz(B) :
For (X,Y) € S3(B), we have rg(X + Y) = r(X). Using T on both sides,
rg(P(X +Y)Q) =rg(PXQ). Then

rg(T(X +7)) =rp(T(X)).
That is,
re(T(X)+ T(Y)) = ra(T(X)).

Conversely, let T preserve S3(B). If T is surjective and B is a binary Boolean
algebra then by Theorem 2.4 we have that T'(E; ;) = E, ;). It is easy to see
that the cells E; ; and E, ; are in the same line if and only if

re(Ei; + E,s) =rg(E;;) if and only if (E;;, E,s) € S3(B).

Since T preserves S3(B) and (E; ;, E,s) € S3(B), we have (T'(E; ;),T(Ers)) €
S3(B). That is,

re(T(E; ;) + T(Ers)) = re(T(Eij)).

Therefore T'(F; ;) and T(E, ) are in the same line. Thus lines are mapped
to lines, and we have that T is a (P, (J)-operator by Lemma 2.5. O
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