• 제목/요약/키워드: Matrix rank

검색결과 246건 처리시간 0.017초

LINEAR PRESERVERS OF SYMMETRIC ARCTIC RANK OVER THE BINARY BOOLEAN SEMIRING

  • Beasley, LeRoy B.;Song, Seok-Zun
    • 대한수학회지
    • /
    • 제54권4호
    • /
    • pp.1317-1329
    • /
    • 2017
  • A Boolean rank one matrix can be factored as $\text{uv}^t$ for vectors u and v of appropriate orders. The perimeter of this Boolean rank one matrix is the number of nonzero entries in u plus the number of nonzero entries in v. A Boolean matrix of Boolean rank k is the sum of k Boolean rank one matrices, a rank one decomposition. The perimeter of a Boolean matrix A of Boolean rank k is the minimum over all Boolean rank one decompositions of A of the sums of perimeters of the Boolean rank one matrices. The arctic rank of a Boolean matrix is one half the perimeter. In this article we characterize the linear operators that preserve the symmetric arctic rank of symmetric Boolean matrices.

SEPARABILITY OF DISTINCT BOOLEAN RANK-1 MATRICES

  • SONG SEOK-ZUN
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.197-204
    • /
    • 2005
  • For two distinct rank-1 matrices A and B, a rank-1 matrix C is called a separating matrix of A and B if the rank of A + C is 2 but the rank of B + C is 1 or vice versa. In this case, rank-1 matrices A and B are said to be separable. We show that every pair of distinct Boolean rank-l matrices are separable.

STRONG PRESERVERS OF SYMMETRIC ARCTIC RANK OF NONNEGATIVE REAL MATRICES

  • Beasley, LeRoy B.;Encinas, Luis Hernandez;Song, Seok-Zun
    • 대한수학회지
    • /
    • 제56권6호
    • /
    • pp.1503-1514
    • /
    • 2019
  • A rank 1 matrix has a factorization as $uv^t$ for vectors u and v of some orders. The arctic rank of a rank 1 matrix is the half number of nonzero entries in u and v. A matrix of rank k can be expressed as the sum of k rank 1 matrices, a rank 1 decomposition. The arctic rank of a matrix A of rank k is the minimum of the sums of arctic ranks of the rank 1 matrices over all rank 1 decomposition of A. In this paper we obtain characterizations of the linear operators that strongly preserve the symmetric arctic ranks of symmetric matrices over nonnegative reals.

LINEAR PRESERVERS OF BOOLEAN RANK BETWEEN DIFFERENT MATRIX SPACES

  • Beasley, LeRoy B.;Kang, Kyung-Tae;Song, Seok-Zun
    • 대한수학회지
    • /
    • 제52권3호
    • /
    • pp.625-636
    • /
    • 2015
  • The Boolean rank of a nonzero $m{\times}n$ Boolean matrix A is the least integer k such that there are an $m{\times}k$ Boolean matrix B and a $k{\times}n$ Boolean matrix C with A = BC. We investigate the structure of linear transformations T : $\mathbb{M}_{m,n}{\rightarrow}\mathbb{M}_{p,q}$ which preserve Boolean rank. We also show that if a linear transformation preserves the set of Boolean rank 1 matrices and the set of Boolean rank k matrices for any k, $2{\leq}k{\leq}$ min{m, n} (or if T strongly preserves the set of Boolean rank 1 matrices), then T preserves all Boolean ranks.

LINEAR MAPS PRESERVING PAIRS OF HERMITIAN MATRICES ON WHICH THE RANK IS ADDITIVE AND APPLICATIONS

  • TANG XIAO-MIN;CAO CHONG-GUANG
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.253-260
    • /
    • 2005
  • Denote the set of n ${\times}$ n complex Hermitian matrices by Hn. A pair of n ${\times}$ n Hermitian matrices (A, B) is said to be rank-additive if rank (A+B) = rank A+rank B. We characterize the linear maps from Hn into itself that preserve the set of rank-additive pairs. As applications, the linear preservers of adjoint matrix on Hn and the Jordan homomorphisms of Hn are also given. The analogous problems on the skew Hermitian matrix space are considered.

EXTREME PRESERVERS OF FUZZY MATRIX PAIRS DERIVED FROM ZERO-TERM RANK INEQUALITIES

  • Song, Seok-Zun;Park, Eun-A
    • 호남수학학술지
    • /
    • 제33권3호
    • /
    • pp.301-310
    • /
    • 2011
  • In this paper, we construct the sets of fuzzy matrix pairs. These sets are naturally occurred at the extreme cases for the zero-term rank inequalities derived from the multiplication of fuzzy matrix pairs. We characterize the linear operators that preserve these extreme sets of fuzzy matrix pairs.

LINEAR TRANSFORMATIONS THAT PRESERVE TERM RANK BETWEEN DIFFERENT MATRIX SPACES

  • Song, Seok-Zun;Beasley, Leroy B.
    • 대한수학회지
    • /
    • 제50권1호
    • /
    • pp.127-136
    • /
    • 2013
  • The term rank of a matrix A is the least number of lines (rows or columns) needed to include all the nonzero entries in A. In this paper, we obtain a characterization of linear transformations that preserve term ranks of matrices over antinegative semirings. That is, we show that a linear transformation T from a matrix space into another matrix space over antinegative semirings preserves term rank if and only if T preserves any two term ranks $k$ and $l$.

LINEAR PRESERVERS OF SPANNING COLUMN RANK OF MATRIX PRODUCTS OVER SEMIRINGS

  • Song, Seok-Zun;Cheon, Gi-Sang;Jun, Young-Bae
    • 대한수학회지
    • /
    • 제45권4호
    • /
    • pp.1043-1056
    • /
    • 2008
  • The spanning column rank of an $m{\times}n$ matrix A over a semiring is the minimal number of columns that span all columns of A. We characterize linear operators that preserve the sets of matrix ordered pairs which satisfy multiplicative properties with respect to spanning column rank of matrices over semirings.

COMPOUND-COMMUTING ADDITIVE MAPS ON MATRIX SPACES

  • Chooi, Wai Leong
    • 대한수학회지
    • /
    • 제48권1호
    • /
    • pp.83-104
    • /
    • 2011
  • In this note, compound-commuting additive maps on matrix spaces are studied. We show that compound-commuting additive maps send rank one matrices to matrices of rank less than or equal to one. By using the structural results of rank-one nonincreasing additive maps, we characterize compound-commuting additive maps on four types of matrices: triangular matrices, square matrices, symmetric matrices and Hermitian matrices.

LINEAR PRESERVERS OF SPANNING COLUMN RANK OF MATRIX SUMS OVER SEMIRINGS

  • Song, Seok-Zun
    • 대한수학회지
    • /
    • 제45권2호
    • /
    • pp.301-312
    • /
    • 2008
  • The spanning column rank of an $m{\times}n$ matrix A over a semiring is the minimal number of columns that span all columns of A. We characterize linear operators that preserve the sets of matrix pairs which satisfy additive properties with respect to spanning column rank of matrices over semirings.