• Title/Summary/Keyword: Matrix image

Search Result 1,012, Processing Time 0.025 seconds

An Efficient Method to Compute a Covariance Matrix of the Non-local Means Algorithm for Image Denoising with the Principal Component Analysis (영상 잡음 제거를 위한 주성분 분석 기반 비 지역적 평균 알고리즘의 효율적인 공분산 행렬 계산 방법)

  • Kim, Jeonghwan;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2016
  • This paper introduces the non-local means (NLM) algorithm for image denoising, and also introduces an improved algorithm which is based on the principal component analysis (PCA). To do the PCA, a covariance matrix of a given image should be evaluated first. If we let the size of neighborhood patches of the NLM S × S2, and let the number of pixels Q, a matrix multiplication of the size S2 × Q is required to compute a covariance matrix. According to the characteristic of images, such computation is inefficient. Therefore, this paper proposes an efficient method to compute the covariance matrix by sampling the pixels. After sampling, the covariance matrix can be computed with matrices of the size S2 × floor (Width/l) × (Height/l).

Automatic Extraction of Image Bases Based on Non-Negative Matrix Factorization for Visual Stimuli Reconstruction (시각 자극 복원을 위한 비음수 행렬 분해 기반의 영상 기저 자동 추출)

  • Cho, Sung-Sik;Park, Young-Myo;Lee, Seong-Whan
    • Korean Journal of Cognitive Science
    • /
    • v.22 no.4
    • /
    • pp.347-364
    • /
    • 2011
  • In this paper, we propose a automatic image bases extraction method for visual image reconstruction from brain activity using Non-negative Matrix Factorization (NMF). Image bases are basic elements to construct and present a visual image. Previous method used brain activity that evoked by predefined 361 image bases of four different sizes: $1{\times}1$, $2{\times}1$, $1{\times}2$, $2{\times}2$, and $2{\times}2$. Then the visual stimuli were reconstructed by linear combination of all the results from these image bases. While the previous method used 361 predefined image bases, the proposed method automatically extracts image bases which represent the image data efficiently. From the experiments, we found that the proposed method reconstructs the visual stimuli better than the previous method.

  • PDF

Image Forensic Decision Algorithm using Edge Energy Information of Forgery Image (위·변조 영상의 에지 에너지 정보를 이용한 영상 포렌식 판정 알고리즘)

  • Rhee, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.75-81
    • /
    • 2014
  • In a distribution of the digital image, there is a serious problem that is distributed an illegal forgery image by pirates. For the problem solution, this paper proposes an image forensic decision algorithm using an edge energy information of forgery image. The algorithm uses SA (Streaking Artifacts) and SPAM (Subtractive Pixel Adjacency Matrix) to extract the edge energy informations of original image according to JPEG compression rate(QF=90, 70, 50 and 30) and the query image. And then it decides the forge whether or not by comparing the edge informations between the original and query image each other. According to each threshold in TCJCR (Threshold by Combination of JPEG Compression Ratios), the matching of the edge informations of original and query image is excused. Through the matching experiments, TP (True Positive) and FN (False Negative) is 87.2% and 13.8% respectively. Thus, the minimum average decision error is 0.1349. Also, it is confirmed that the performed class evaluation of the proposed algorithm is 'Excellent(A)' because of the AUROC (Area Under Receiver Operating Characteristic) curve is 0.9388 by sensitivity and 1-specificity.

An Application of a Parallel Algorithm on an Image Recognition

  • Baik, Ran
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.219-224
    • /
    • 2017
  • This paper is to introduce an application of face recognition algorithm in parallel. We have experiments of 25 images with different motions and simulated the image recognitions; grouping of the image vectors, image normalization, calculating average image vectors, etc. We also discuss an analysis of the related eigen-image vectors and a parallel algorithm. To develop the parallel algorithm, we propose a new type of initial matrices for eigenvalue problem. If A is a symmetric matrix, initial matrices for eigen value problem are investigated: the "optimal" one, which minimize ${\parallel}C-A{\parallel}_F$ and the "super optimal", which minimize ${\parallel}I-C^{-1}A{\parallel}_F$. In this paper, we present a general new approach to the design of an initial matrices to solving eigenvalue problem based on the new optimal investigating C with preserving the characteristic of the given matrix A. Fast all resulting can be inverted via fast transform algorithms with O(N log N) operations.

Changing Image Resolution In A Block Transform Domain (임의의 직교 블록 변환 영역에서의 영상 크기 변환 방법)

  • Lee, Nam-Koo;Oh, Hyung-Suk;Kim, Won-Ha
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • This paper develops a methodology for resizing the resolution of an image in an arbitrary block transform domain. To accomplish this, we represent the procedures resizing images in an orthogonal transform domain in the form of matrix multiplications from which the matrix scaling the image resolutions is produce. The experiments showed that the proposed method produces the reliable performances without increasing the computational complexity, compared to conventional methods when applied to various transforms.

A New Shape Adaptation Scheme to Affine Invariant Detector

  • Liu, Congxin;Yang, Jie;Zhou, Yue;Feng, Deying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1253-1272
    • /
    • 2010
  • In this paper, we propose a new affine shape adaptation scheme for the affine invariant feature detector, in which the convergence stability is still an opening problem. This paper examines the relation between the integration scale matrix of next iteration and the current second moment matrix and finds that the convergence stability of the method can be improved by adjusting the relation between the two matrices instead of keeping them always proportional as proposed by previous methods. By estimating and updating the shape of the integration kernel and differentiation kernel in each iteration based on the anisotropy of the current second moment matrix, we propose a coarse-to-fine affine shape adaptation scheme which is able to adjust the pace of convergence and enable the process to converge smoothly. The feature matching experiments demonstrate that the proposed approach obtains an improvement in convergence ratio and repeatability compared with the current schemes with relatively fixed integration kernel.

A Novel Image Encryption using MLCA and CAT (MLCA와 CAT를 이용한 새로운 영상 암호화 방법)

  • Piao, Yong-Ri;Cho, Sung-Jin;Kim, Seok-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2171-2179
    • /
    • 2009
  • In this paper, we propose a novel Image Encryption using MLCA (Maximum Length Cellular Automata) and CAT (Cellular Automata Transform). Firstly, we use the Wolfram rule matrix to generate MLCA state transition matrix T. Then the state transition matrix T changes pixel value of original image according to pixel position. Next, we obtain Gateway Values to generate 2D CAT basis function. Lastly, the basis function encrypts the MLCA encrypted image into cellular automata space. The experimental results and security analysis show that the proposed method guarantees better security and non-lossy encryption.

Extension of Fast Level Set Method with Relationship Matrix, Modified Chan-Vese Criterion and Noise Reduction Filter

  • Vu, Dang-Tran;Kim, Jin-Young;Choi, Seung-Ho;Na, Seung-You
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3E
    • /
    • pp.118-135
    • /
    • 2009
  • The level set based approach is one of active methods for contour extraction in image segmentation. Since Osher and Sethian introduced the level set framework in 1988, the method has made the great impact on image segmentation. However, there are some problems to be solved; such as multi-objects segmentation, noise filtering and much calculation amount. In this paper we address the drawbacks of the previous level set methods and propose an extension of the traditional fast level set to cope with the limitations. We introduce a relationship matrix, a new split-and-merge criterion, a modified Chan-Vese criterion and a novel filtering criterion into the traditional fast level set approach. With the segmentation experiments we evaluate the proposed method and show the promising results of the proposed method.

Vehicle Face Recognition Algorithm Based on Weighted Nonnegative Matrix Factorization with Double Regularization Terms

  • Shi, Chunhe;Wu, Chengdong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2171-2185
    • /
    • 2020
  • In order to judge that whether the vehicles in different images which are captured by surveillance cameras represent the same vehicle or not, we proposed a novel vehicle face recognition algorithm based on improved Nonnegative Matrix Factorization (NMF), different from traditional vehicle recognition algorithms, there are fewer effective features in vehicle face image than in whole vehicle image in general, which brings certain difficulty to recognition. The innovations mainly include the following two aspects: 1) we proposed a novel idea that the vehicle type can be determined by a few key regions of the vehicle face such as logo, grille and so on; 2) Through adding weight, sparseness and classification property constraints to the NMF model, we can acquire the effective feature bases that represent the key regions of vehicle face image. Experimental results show that the proposed algorithm not only achieve a high correct recognition rate, but also has a strong robustness to some non-cooperative factors such as illumination variation.

Spliced Image Detection Using Characteristic Function Moments of Co-occurrence Matrix (동시 발생 행렬의 특성함수 모멘트를 이용한 접합 영상 검출)

  • Park, Tae-Hee;Moon, Yong-Ho;Eom, Il-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.265-272
    • /
    • 2015
  • This paper presents an improved feature extraction method to achieve a good performance in the detection of splicing forged images. Strong edges caused by the image splicing destroy the statistical dependencies between parent and child subbands in the wavelet domain. We analyze the co-occurrence probability matrix of parent and child subbands in the wavelet domain, and calculate the statistical moments from two-dimensional characteristic function of the co-occurrence matrix. The extracted features are used as the input of SVM classifier. Experimental results show that the proposed method obtains a good performance with a small number of features compared to the existing methods.