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Abstract  

 
In this paper, we propose a new affine shape adaptation scheme for the affine invariant feature 
detector, in which the convergence stability is still an opening problem. This paper examines 
the relation between the integration scale matrix of next iteration and the current second 
moment matrix and finds that the convergence stability of the method can be improved by 
adjusting the relation between the two matrices instead of keeping them always proportional 
as proposed by previous methods. By estimating and updating the shape of the integration 
kernel and differentiation kernel in each iteration based on the anisotropy of the current second 
moment matrix, we propose a coarse-to-fine affine shape adaptation scheme which is able to 
adjust the pace of convergence and enable the process to converge smoothly. The feature 
matching experiments demonstrate that the proposed approach obtains an improvement in 
convergence ratio and repeatability compared with the current schemes with relatively fixed 
integration kernel. 
 
 
Keywords: Local image feature, affine invariant feature, scale invariant feature, adaptive 
kernel shape  
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1. Introduction 

Local image features have shown excellent performance in many applications such as image 
matching and registration, image retrieval and classification, object and texture recognition, 
3D reconstruction and stereo matching. The fundamental difficulty of using local image 
features resides in extracting features invariant to differing views. There are many impressive 
works in the literature trying to address the problem, which are shown in Section 2. Harris 
interest point [1], which is a very popular local feature, is robust to geometric and photometric 
deformations, but is not invariant to scaling [2]. Mikolajczyk, K. and Schmid [3] extended 
Harris to be invariant to scale and affine transformation based on previous works [4][5]. This 
detector is called Harris-Affine interest point in this paper. However, the convergence stability 
of this algorithm needs to be further investigated [3]. 

Lindeberg and Garding [4] introduced the second moment matrix defined in affine Gaussian 
scale space as the metric matrix (determined by an integration Gaussian kernel and a 
differentiation Gaussian kernel, which are determined by an integration scale matrix and a 
differentiation scale matrix respectively. See equation (3) in Section 3.1.2 for more details) of 
local image pattern to find blob-like affine features. During the iteration process of finding 
affine invariant regions, to reduce the search space, Lindeberg et al. assumed that the 
integration scale matrix and differentiation scale matrix are coupled and derived fixed point 
property based on the above assumption, which constitutes the theory basis of later iteration 
algorithms [3][4][5]. According to the fixed-point property, these iteration algorithms all 
required that the expected integration and differentiation scale matrices (next iteration) are 
proportional to the current second moment matrix (current iteration) at the given point. 
However, such linear relation between them is probable to cause overshoot of anisotropy 
measured by the second moment matrix at the next iteration, and may hence reduce the 
stability of convergence. 

This paper regards the expected integration and differentiation scale matrices as the 
function of the current second moment matrix and its anisotropy. Based on the anisotropy 
measured in each iteration, we dynamically adjust the relation between the two scale matrices 
and the second moment matrix. To sum up, our approach has the following properties: 

(1) The relation between the expected integration and differentiation scale matrices and the 
current second moment matrix is always non-linear.  

(2) The relation between the expected integration and differentiation scale matrices and the 
current second moment matrix is dynamically updated.  

(3) With the increasing number of iteration, the shapes of the expected integration and 
differentiation scale matrices will gradually approach to the shape determined by the current 
second moment matrix. 

The remainder of this paper is organized as follows: In Section 2, we review the previous 
works in scale- and affine-invariant feature detection. In Section 3, the details of the proposed 
method are presented. In Section 4, we provide the detailed experiment results on feature 
matching experiments. Section 5 concludes the paper. 

2. Related Work 
Many scale- and affine- invariant features detection algorithms have been explored in the 
literature [6].  
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2.1 Scale Invariant Feature  
The automatic scale selection for various keypoint detectors have been thoroughly explored by 
Lindeberg [7]. For the detection of blob-like feature points, Lindeberg proposed to search for 
the local absolute extremum of ( )( )2 Trace ;D Dσ σΗ x  (also called LOG, where Dσ is the 

differentiation scale) and ( )4 det ;D Dσ σΗ x  in the 3D scale-space.   
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LOG can be well approximated by DOG (difference of Gaussian) [8]. By convolving the 
image with the difference of Gaussian kernels at a variety of scales and selecting local maxima 
in 3D scale-space, DOG achieves better computation efficiency compared with LOG. To 
further accelerate the detection, Bay et al. [9] provided an efficient implementation of 

( )4 det ;D Dσ σΗ x  by applying the integral image for the computation of image derivatives.  
Mikolajczyk and Schmid [3] proposed to use the multi-scale Harris detector (or structure 

tensor) to determine spatial interest points and the characteristic scales at these points were 
determined by searching local peaks of ( )( )2 Trace ;D Dσ σΗ x over scales, leading to the 
Harris-Laplace detector. This detector provides complementary features points to blob-like 
detectors. To optimize keypoint detection to achieve stable local descriptors, Gyuri Dorko and 
Schmid [10] constructed a scale space based on the stability of region descriptor. The 
characteristic scale was selected at the stability extremum of the local descriptor. Wei-Ting 
Lee et al. [11] followed this idea and extract feature points directly on the histogram-based 
representations. Förstner et al. [12][13] proposed a new scale space framework based on the 
structure tensor and the general spiral feature model to detect scale-invariant features (SFOP) 
which have shown good repeatability under scale and rotation transformation. 

2.2 Affine Invariant Feature  
Many methods such as MSER [14], EBR [15], IBR [15], affine saliency [16], Harris-Affine 
[3], and Hessian-Affine [3][17] are motivated by the fact that only scale invariance cannot 
arrive at a reliable image matching under significant view changes.  

MSER (Maximally Stable Extremal Regions), EBR and IBR are all region and boundary 
based detector. MESER extracts a nest of regions called Extremal Regions, where each pixel 
intensity value in a region is less (or greater) than a certain threshold, and all intensities around 
the boundary are greater (or less) than the same threshold. An Extremal Region is a Maximally 
Stable Extremal Region when it remains stable over a range of thresholds. IBR [15] first 
detects local maxima of the image intensity over multiple scales and then a region boundary is 
determined by seeking for intensity singularity of the intensity along rays radially emanating 
around these points. The regions extracted by MSER and IBR are very similar. EBR starts 
from a corner, then finds another two anchor points along the two edges by the relatively 
invariant geometrical constraint [15], and finally obtain parallelogram regions. Kadir et al. [16] 
extracts circular or elliptic regions in the image as maxima of the entropy scale-space of region. 
On one hand the detector can extract many features, but on the other hand it is known to have 
higher computational complexity and lower repeatability than most other detectors [17]. 
Harris-Affine and Hessian-Affine first detect feature points with multi-scale second moment 
matrix and Hessian matrix. Subsequently, affine covariant regions around these points are 
obtained by affine shape adaptation with the second moment matrix. 
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A detailed performance comparison between them has been presented in [17], where it is 
shown that Hessian-Affine and Harris-Affine not only provides more features compared with 
other methods, but also gives good repeatability and matching scores. Therefore, we focus on 
them and try to enhance their performance. 

Scale space based affine invariant feature Harris-Affine and Hessian-Affine experienced 
the following developing process. Lindeberg and Garding [4] developed a method for finding 
blob-like affine features using an affine adaptation scheme based on the second moment 
matrix, deriving the affine invariance property of the second moment matrix and the shape 
adapted fixed-point property. Later, Baumberg [5] found the scheme can be used to determine 
the affine deformation of an isotropic structure. He first extracted multi-scale Harris points and 
then adapted the shapes of their neighborhoods to the local image structures using the iteration 
scheme proposed by Lindeberg. During the adaptation, the location and scale of the feature 
point keep invariant, thereby introducing some localization and shape bias. F. Schaffalitzky 
and A. Zisserman [18] employed the Harris-Laplace [3] detector to extract feature point and 
computed an affine invariant neighborhood using the method proposed by Baumberg. 
Likewise, this approach is also likely to result in localization and shape bias when matching 
image pairs under significant viewpoint. Mikolajczyk and Schmid [3] improved the previous 
methods and implemented a full scale adaptation approach of Lindeberg, that is the scale, 
location and affine shape are updated in each iterative step, thereby gaining better localization 
effect. Our method tries to further enhance the performance of the detector by dynamically 
changing the shapes of integration and differentiation kernels in iteration process. 

3. The Proposed Affine Invariant Detector 

3.1 Background 

3.1.1 Scale Normalized Second Moment Matrix 
Lindeberg and Garding [4] proposed to use the second moment matrix to estimate the 
anisotropic shape of a local image structure. Scale normalized second moment matrix, also 
known as the local shape matrix, is defined as follows:      

2( ; , ) ( ; ) ( ( ; ) ( ; ) )T
D I D I D DG L Lµ σ σ σ σ σ σ= ⊗ ∇ ∇x x x x                    (2) 

where Dσ  is the differentiation scale, Iσ  is the integration scale, ( ; )DL σ∇ x  is the gradient 
vector computed at x with the Gaussian derivative at scale Dσ . This matrix can also be used to 
extract multi-scale Harris points [3][5].  

3.1.2 Affine Second Moment Matrix 
Many textured patches show distinct anisotropy, varying scales along different directions. To 
obtain a more accurate description of textured patches, Lindeberg et al. [4] used the second 
moment matrices defined in affine Gaussian scale space to describe the anisotropic shape of 
the local image structure. The normalized second moment matrices are defined as follows:   

( ; , ) det( ) ( ; ) ( ( ; ) ( ; ) )T
I D D I D DG L Lµ Σ Σ = Σ Σ ⊗ ∇ Σ ∇ Σx x x x                    (3) 

where:  

                     ( )

11( ; ) exp( )
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T
I

I
I

G
π

−Σ
Σ = −

Σ

x xx                                      (4) 
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                                                ( )( ; ) ( ; )D DL G I∇ Σ = ∇ Σ ⊗x x x                                            (5) 

In (4) and (5), 1
I
−Σ  and 1

D
−Σ , which are 2×2 covariance matrices, refer to integration scale 

matrix and differentiation scale matrix. These two matrices can determine the shapes of the 
integration and differentiation Gaussian kernels. 

Suppose two image patches are related by an affine transformation R L=x Ax . Then the 
affine second moment matrices Lµ and Rµ  computed at Lx  and Rx are shown as follows: 

, , , , ( ; , ),    ( ; , )L L I L D L R R I R I Rµ µ µ µ= Σ Σ = Σ Σx x  

Lindeberg et al. [4] had verified the following properties：  

 ,T
L Rµ µ= A A   , , ,T

I R I LΣ = ΣA A   , , 
T

D R D LΣ = ΣA A                          (6) 
Based on the above equation(6), it’s easy to verify the property of affine invariance of µ . 

3.1.3 Invariance Property of Fixed-point 

In a realistic situation, the affine transformation A  is always unknown. Therefore, to find 
corresponding Lµ  and Rµ , we must compute all possible combinations of kernel parameters 
on brute force, which is unpractical. But if the second moment Lµ  is calculated in such a way: 

                              ( )
, , 

1 1,   =s   ,
I L D LL Lt t sµ µ− − += Σ Σ ∈ℜ                                           (7) 

Lindeberg et al. [4] claimed the above fixed -point property is persevered under affine 
transformation. In other words, the following equations also hold if R L=x Ax : 

                            ( )
, , 

1 1,   =s   ,
I R D RR Rt t sµ µ− − += Σ Σ ∈ℜ                                           (8) 

During the process of detection, suppose estimated 1
I
−Σ  and 1

D
−Σ  verify (7) or(8), we 

assume that there is an unknown affine transformation A  between the two patches. 
Based on the fixed-point property, the previous iterative schemes in [3][4] and [5] all let 
1

I
−Σ  and 1

D
−Σ  be proportional to the second moment matrix in each iteration. 

In addition, all the operations in affine shape adaptation are performed in the transformed 
image domain [3][5]. The points in neighborhood around feature points are normalized by 
transformation 1/2

norm µ=x x , and then uniform Gaussian kernels can be applied to calculation. 

If computed ( )1 1, ,I Dµ − −Σ Σ  verifies the condition (7) or (8) , µ  will be isotropic in the 

transformed image domain. 

3.2 Adaptive Kernel-shape based Affine Invariant Detector 

In the following, we discuss adaptive kernel-shape based affine invariant detector. Our 
approach does not restrict the type of interest point. Without loss of generality, we choose 
multi-scale Harris as detectors. For each feature point, the second moment matrix is calculated 
and the corresponding integration and differentiation scales are selected automatically. 

3.2.1 Motivation  
At first, in order to make following description more clear, we assume the shape of a matrix 
A  is the elliptical region defined by 1T =x Ax  and its aspect is defined as the direction of the 
eigenvector corresponding to the minimum eigenvalue of A . Fig. 1 shows the shape 
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relationships of the kernels between the two image domains in the previous methods, where 
the relatively fixed integration kernel is adopted. From this figure, we can observe if the 
expected integration scale matrix 1

,I new
−Σ  for the next iteration is proportional to the current 

second moment matrix cutµ , then there is always an apparent shape difference between the 
expected integration kernel (shown in blue ellipse) and the current integration kernel (shown 
in green ellipse) in the normalized image domain. Such shape difference makes the obtained 
second moment matrix newµ  in the next iteration always anisotropic with a great probability. 
 

 
 
The above conclusions can be proved as follows: 
Proof: 

Suppose 1/2
norm cutµ=x x，based on (6)，we can get: 

( ) ( ) ( ) ( )1/2 1/2 1/2 1/2   
T T

cut cut norm cut norm cut cut cutµ µ µ µ µ µ µ µ− −= ⇒ = = I                             (9) 

( ) ( ) ( )1/2 1/2 1 1
, , , ,   ,     

T

I cut norm cut cut cut I cut norm cuts s sµ µ µ µ− − +Σ = = ⇒ Σ = ∈ℜI                (10) 

( ) ( ) ( )1/2 1/2 1
, , , , ,        ,          

T

I new norm cut I new cut I new norm t tµ µ − +Σ = Σ ⇒ Σ = ∈ℜI                (11) 

The subscript cut represents the current matrices; norm refers to the forms of the current 
matrices in the normalized image domain and new denotes the expected matrices in the next 
iteration. From equation (9), as can be observed, normµ  is always isotropic when using the 
Gaussian kernel with , ,I cut normΣ . Based on this conclusion, it’s reasonable to predict that the 

aspect of newµ , which is calculated using the Gaussian kernel with , ,I new normΣ , will be in 

accordance with the aspect of 1
cutµ− . This can be confirmed by Fig. 2-(a), where the affine 

iteration procedures of an ideal blob structure are illustrated with Hessian matrix as measure 
matrix (affine Hessian matrix is also affine covariant which is proved in Appendix A). In Fig. 
2-(a), the aspects between the ellipses in consecutive iterations are always perpendicular. We 
call this phenomenon overshoot. 

                       (a) The current image domain      (b) The normalized image domain 
In (a), the blue filled elliptic region is determined by the current second moment matrix; the green 
circle represents the shape of current integration kernel; the blue ellipse refers to the expected 
integration kernel; (b) illustrates shapes of the matrices in the normalized image domain, the color 
labels correspond to (a). As we can see that under the smoothing of the Gaussian kernel labeled 
with green color, the local image structure is transformed into an isotropic structure region shown 
in the blue filled circle.  

1
, ,  I new norm
−Σ1/2

cutµ

cutµ
1
, , I cut norm
−Σ

1
, I new
−Σ

newµ

normµ

1
, I cut
−Σ

Fig. 1. The shape relations between the kernels when the relatively fixed integration kernel is adopted 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 6, December 2010                                  1259 
 

 

 

 
Intuitively, the greater the value of max min( ) / ( )cut cutλ µ λ µ  is, the larger anisotropy of newµ  

may be. This phenomenon can also be observed in Fig. 2-(a). Therefore, when the anisotropy 
of cutµ  is larger, the iteration process may fall into a state of oscillation, thereby increasing the 
possibility of divergence. 
     

 
  
 
Based on the above analysis and comparison, we propose a method which is able to estimate 

the shape of expected integration kernel and adjust the convergence pace. As shown in Fig. 
3-(a), if 1

,I new
−Σ

 
can share the shape similar to the red ellipse, then in the normalized image 

                         (a) The current image domain    (b) The normalized image domain 
In (a), the blue filled elliptic region is determined by the current second moment matrix; the green 
circle represents the shape of the current integration kernel; the blue dotted ellipse refers to the 
expected integration kernel in previous methods; the red ellipse denotes the candidate integration 
kernel of the proposed method; (b) illustrates shapes of the matrices in the normalized image 
domain ( 0.5γ < ), the color labels correspond to (a). The local structure is still an anisotropic 
structure region under the smoothing of the green Gaussian kernel, as shown in the blue filled 
circle. However, at this time, if the local structure is smoothed by the red integration kernel, it is 
probable  for it to be close to an isotropic structure shown in the dotted red circle. 

1
, ,  I new norm
−Σcut

γµ

cutµ

1
, , I cut norm
−Σ

1
, I new
−Σ

newµ

normµ

1
, I cut
−Σ

Fig. 2. The iteration process of an ideal blob structure with two different methods 
 

(a) The affine iteration process of an ideal blob structure with the relatively fixed integration kernel. 
(b) The affine iteration process of an ideal blob structure with the adaptive integration kernel. 

The red ellipses represent the anisotropy of the local image structure measured by Hessian matrix.  

(a) 

(b) 

    

    

1st iteration 2nd iteration 3rd iteration 4th iteration 

1st iteration 2nd iteration 3rd iteration 4th iteration 

Fig. 3. The shape relations between the kernels when the adaptive integration kernel is used 
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domain the probability max min( ( ) / ( ) 1)new newp λ µ λ µ →  is greater than the one in previous 
methods. In this case, normµ  is no longer isotropic and its aspect has become consistent with 
that of curµ . This is illustrated in blue filled elliptic region in Fig. 3-(b). Under the smoothing 
of the Gaussian kernel with , ,I new normΣ ,  the shape of newµ  is probable to approach to a circle, 
as shown in red dotted circle in Fig. 3-(b).  

The second row of Fig. 2 shows the iteration procedures when using the proposed method. 
From the figure, we can observe that the overshoot phenomenon has been effectively 
suppressed and the convergence process becomes smoother. Compared to previous methods, 
the anisotropy of the blob structure is getting smaller in each step when our method is adopted. 
In the following, we will discuss more details of our method.  

3.2.2 Approximate Estimation of the Shape of Integration Kernel 

First, we use the eigenvalue ratio ξ  [3] to measure the anisotropy of µ :  

                                         [ ]max

min

( )          1,  
( )

λ µξ ξ
λ µ

= ∈ ∞                                        (12) 

When ξ  is equal to 1, the local image structure is a perfect isotropic structure.  
As can be observed from Fig. 1-(b), if there is linear relationship between the expected 

integration kernel and the shape of curµ with a large anisotropy, then newµ  probably has a 
large anisotropy. To such integration kernel, it’s reasonable to assign it a low confidence level. 
Furthermore, we also expect that the estimated integration kernel can continue to reduce the 
anisotropy of the local image structure. Based on these criteria, the shapes of 

[ ]1 , 0.5,1I, new cutt ηµ η−Σ = ∈  (shown in blue ellipses in Fig. 4) can meet our requirements very 
well. 
 

 
 
 

Same as [3], our iterative shape adaptation scheme also works in the normalized image 
domain. Assume that the estimated integration kernel with 1  I, new cutt ηµ−Σ = can be transformed 

into an isotropic kernel using a linear transformation cur
γµ ( γ  is called normalization 

exponent here). Since curµ is a positive definite symmetric matrix, then the following equation 
holds: 

                                           [ ] 2           0.25,0.5  η γ γ= ∈                                            (13) 
According to equation (13), we propose two functions to estimate the normalization 

exponent γ  directly. 

Txμx = 1
previous methods

Our method

Fig. 4.  The comparison of the integration kernels in iteration process between our method and the 
previous methods 
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Their figures are shown in Fig. 5. For the function 1F , we assume that γ  is piecewise linear 
with  ξ  while the relationship between them becomes nonlinear in 2F . In these two figures, 
when ξ  approaches to 1, there is a sufficient margin in which  γ  approaches to 0.5. One 
reason for the above assumptions is that such forms enable the extracted local image regions to 
better meet the fixed point condition (see Section 3.2.5). 
 

   
 

Since γ  is less than 0.5, the shape of normµ  is transformed into an anisotropic structure 
illustrated in Fig. 3-(b) with the blue elliptical region. The diagram of the shape evolution of 

normµ  in the normalized image domains can be observed in Fig. 6.  
 

 
3.2.3 Modified Estimation of the Shape of Integration Kernel 
In our approach, γ  is estimated in each iteration. However, due to the noise effect, γ  may 
have small variations. To make γ  immune against to noise, we combine the current γ  and the 
last γ  to achieve a modified estimation of γ : 

1
( ,  ) ,  1cur lastγ γ γ= =w w  (16) 

Fig. 6. The shape evolution of the second moment matrix in the normalized image domain 
 

Fig.  5. The diagrams of the two estimation functions 
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3.2.4 Shape Adaptation Matrix 
The proposed scheme is carried out in the transformed image domain. Often it requires several 
iterations before convergence. The second moment matrix µ  is computed in each iteration. 
Based on its anisotropy, γ  can be assigned a reasonable value by the above proposed method. 

Combining them, we can obtain a staged transformation matrix γµ . The final shape 
adaptation matrix M , which is applied to the transformation of the neighborhoods of feature 
points in original image, can be achieved by concatenating these staged transformation 
matrices. The matrix M  obtained in thk  step of affine iteration is shown as follows: 

( ) (0)

1, 
,    [0.25,0.5]ik

i
i k

γµ γ
=

= ∏ ∈M M                    (17) 

If the affine shape adaptation converges, then: 
  ( )  k≈M M                                                          (18) 

3.2.5 Integration Scale Matrix 
Although each staged transformation matrix is positive definite symmetric, the finally 
obtained transformation matrix M  is not a symmetric matrix. The expected second moment 
matrix and integration scale matrix for the feature point assume the following forms: 

                                        Tµ = M M                                                             (19) 
  1 ,        T

I t t− +Σ = ∈ℜM M                                      (20) 
In order to fulfill the fixed-point property (7), the obtained Tµ = M M  must be relatively 

affine invariant.  
 
Proposition 1: If the normalization exponent γ in the last staged transformation matrix is 

equal to 0.5, then  ( )1,  Iµ −Σ  is a fixed-point. Here, the obtained feature point is assumed to 

undergo all the staged affine deformations ( ), 1,i i kγµ ∈ , k is the iterative number for 
convergence.  
Proof: 

Insert ( )( ) (0) (0)

1, 
,   ik

i k

γµ
=

= ∏ =M M M I
 
into (19), it follows that:  

( ) ( ) ( )( )( ) ( )(0) (0) (0) (0)

1, 1, 1, 1 1, 1
  =i i i k k i

T T TT

i k i k i k i k

γ γ γ γ γ γµ µ µ µ µ µ µ
= = = − = −

= = ∏ ∏ ∏ ∏M M M M M M

Enforcing that ( ) (0)

1, 1
=  i

i k

γµ
= −
∏B M , we have 

( )   k k
TT γ γµ µ µ= B B                                             (21) 

If  0.5kγ = , then 
1    T T

k kµ µ µ µ− −= ⇒ =B B B B                                     (22) 
Inserting (22) into (20), we get   

( ) 11 1 1   T T T T
I k I k kt t t tµ µ µ −− − − − −Σ = = = ⇒ Σ = = ΣM M B B B B B B      (23) 

Combining (22), (23), (19) and (20), we can obtain that ( Tµ = M M , 1 T
I t−Σ = M M ) is a 
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fixed-point. 
In practice, if lim 0.5ii k

γ
→

= , then the fixed-point can be obtained with sufficient accuracy. 

The problem has been considered in the proposed algorithm by letting kγ  be close to 0.5 in the 
later iterations (see Fig. 5).  

 
Proposition 2: If the local regions around points Lx  and Rx  are linked by an affine 
transformation A  and are normalized by shape adaptation matrices ,L norm L L=x M x  and 

R, norm R R=x M x , then the relation between these two normalizations is up to an orthogonal 

transformation R  and 1
R L
−=A M RM . 

Proof: 
Based on equation (6), we can obtain: 

1 1
, , T T T T

L L L norm L L norm L L L L L L Lµ µ µ µ− − − −= ⇒ = = =M M M M M M M M I  

In the same way, we can get: ,R normµ = I . 

If ,R, norm L norm=x Bx , then , ,    T T
L norm R normµ µ= ⇒ =B B B B I . 

Therefore, B  is an orthogonal transformation R .  
Furthermore, 1

,   R, norm L norm R R L L R L
−= ⇒ = ⇒ =x Rx M x RM x A M RM .  

Thus, the proposition 2 has been proved.    
     

The affine normalization process can be observed in Fig. 7. The ambiguity of rotation can 
be removed by other geometric constraints, such as the dominant direction [8].  
 

 

 

 3.2.6 Convergence Criteria 

We stop iterating when the matrix newµ  is sufficiently close to a pure rotation and favors the 
fixed-point condition. Referring to [3], we propose the following convergence criteria: 

max

min

( ) <1.05
( )

new

new

λ µ
λ µ

      and         
2

0.5 0.1kγ − <                        (24) 

where k  is the number of iteration.  

Fig. 7. Diagram illustrates the affine normalization based on the second moment matrices. Image 
coordinates are transformed with the shape adaptation matrix M. The transformed images are related by 

an orthogonal transformation 

T
L L Lµ = M M   T

R R Rµ = M M

, L norm L L=x M x , R norm R R=x M x

 R L=x Ax

, , R norm L norm=x Rx
, L normµ = I

, R normµ = I
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4. Evaluation for Image Matching 

4.1 Data Set  

    

(a) 

    

(b) 

    
(c) 

    
(d) 

    
(e) 

    
(f) 

Fig. 8.  Data set. Viewpoint change for structured scene (a), and for textured scene (b); scale and 
rotation for structured scene (c); blur for textured scene (d); (e) light change; (f) JPEG compression. In 

the experimental comparisons, the left most image of each set is used as the reference image 
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In this section, we evaluate adaptive kernel-shape based affine invariant detector and compare 
it with the relatively fixed kernel detectors on a standard dataset, which comes from [19], a 
popular dataset for the evaluation of local feature properties. The dataset consists of eight 
image sequences including textured-images and structured-images. There are different 
deformations among these images, like viewpoint change, scale and rotation change, light 
change, blur, and JPEG compression. The test images of the standard dataset used in the 
experiments are shown in Fig. 8. These image pairs are either planar scene or captured from 
fixed-position camera during acquisition. Thus, the relation between them can be modeled by 
a 2D homography matrix. In this way, the image set has also provided homographies for some 
pair of images. 

4.2 Evaluation Metric 

We adopt the metrics in [17] to evaluate the performance of affine detectors. More specifically, 
the following three metrics are adopted: 

(1) Correct match metric :    1
( )

a b

a b

T

T

R R
R R
µ µ

µ µ

ε− <
A A
A A




 

where Rµ  represents the elliptic region defined by 1Tµ =x x ; A  is a locally affine 

transformation of the homography between the two images; 
a b

TR Rµ µA A  and 

a b

TR Rµ µA A  refer to the area intersection and area union respectively; ε represents the 
overlap error.  

(2) Repeatability:  

( ) ( )( )
#of correspondences Repeatability

min #of correspondences image1 ,#of correspondences image 2
=

 
(3) Convergence ratio:  

#of  feature points of convergence convergence ratio=
#of  total feature points

 

4.3 Experimental Results 

We compare the proposed method to previous method in two schemes: multi-scale Harris 
points and using the second moment matrix as affine shape adaptation; multi-scale Hessian 
points and employing the Hessian matrix as affine shape adaptation. Both of the two schemes 
employ the same matrices in feature point extraction and affine shape adaptation, so the shape 
adaptation matrices definitely contain sufficient information of the local image structures. The 
proposed approach is based on the prediction of the local image structure, so it naturally fits in 
such framework. We have corrected some errors and bugs of the code of Laptev 
(http://www.nada.kth.se/~laptev/code.html) and employ it for the next experiments. 1200 
candidate feature points are first extracted at three scales: 2, 6 and 10. Then these points 
proceed to scale selection, location modification and affine shape adaptation, and finally 
converge to fixed-points. To reduce the complexity of the algorithm, we choose I DΣ = 2Σ  
across iterations. We aim at comparing the performance of relatively fixed kernel and adaptive 
kernel. Simplifying relevant steps is also helpful to observe the performance variation between 
them. The test programs are running on Intel(R) Xeon(R) E5520 2.26GHz.  

http://www.nada.kth.se/~laptev/code.html�
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4.4.1 Scheme Selection 
There are three unknowns required to be determined in our scheme: the estimation function, 
two thresholds ϑ  and τ , and weighting vector w . In general, if ϑ  and τ  are larger, the 
estimation functions will reduce the ability to adjust iteration process. In contrast, if ϑ  and τ  
are smaller, this is likely to cause premature convergence of the iterative algorithm. As a result, 
the obtained image regions cannot satisfy the fixed-point property (7). Hence it is important 
for our scheme to select proper parameters. We determine these unknowns by referring to [3] 
and doing experiments. For a given estimation function, we fix a threshold and just vary the 
other one. The repeatability and matching score on the standard image set [19] are used as 
evaluation metric. In these experiments, we have found that the performance of our method is 
not very sensitive to these parameters. We propose to use the linear function with 0.25ϑ = , 

( )6,13τ ∈  and the quadratic function with 0.25ϑ = , ( )6,9τ ∈ . As for w , it is proposed 

that 1 2w w> . In the next experiment, the quadratic function with 0.25ϑ = , 6τ = , and 

( )0.9,0.1 T=w  is selected as the candidate scheme. 

4.4.2 Experimental Results 
Fig. 9, Fig. 10, Fig. 11, Fig. 12, Fig. 13, and Fig. 14 show the experiment results of our 
method on the different image pairs on the standard dataset. In Fig. 9 and Fig. 10, we show the 
comparative results of two types of methods: the methods based on relatively fixed kernel 
shape (FK-Ha-Affine and FK-HH-Affine) and the methods based on adaptive kernel shape 
(AK-HH-Affine and AK-HH-Affine), under affine transformation. The symbol ‘Ha-Affine’ 
represents Harris points with the second moment matrix for affine adaptation and ‘HH-Affine’ 
refers to Hessian points with the Hessian matrix for affine adaptation. Fig. 11 shows the result 
under scale change and rotation. Moreover, Fig. 12 shows the performance comparison of 
methods under significant amount of image blur in the structured scene. Finally, the 
comparative results under illumination change and JPEG compression are shown in Fig. 13 
and Fig. 14. In all of these Fig., plot (a) shows repeatability and plot (b) the corresponding 
convergence ratio. 

As can be seen from these plots, in most cases, AK- based methods achieve better 
convergence ratio and repeatability compared with FK-based methods. This demonstrates the 
effectiveness of the proposed method on improving the convergence stability of Harris-Affine 
although the performance improvement is not very significant. 

Moreover, in Fig. 15, we also show the experiment results of descriptor matching score 
which are used to evaluate the distinctiveness of local image regions obtained by various kinds 
of detectors [17]. Our methods and Harris-Affine extract same local image regions. Their 
difference is only residing in affine shape adaptation. Thus, the scores of descriptor matching 
and repeatability should be similar between them. The plots in Fig. 15 confirm this inference, 
and the experiment results are in accordance with conclusions in [10][17]. 

Finally, in terms of the number of iteration, our methods achieve comparable iteration times 
compared to the FK-based methods, as can be shown in Fig. 16. Each data mark in the plots 
represents the total iteration times from all the feature points in one image sequence (6 images). 
In addition, from the view of computation complexity, our approach mainly increases a linear 
discrimination process to each iteration, which assumes a very low computation cost and can 
be fully neglected compared to the Gaussian smoothing of scale-space in each iterative 
process. 
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 Fig. 9. Viewpoint change for structured scene (a) repeatability  (b) convergence ratio 
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(a)                                                                         (b) 

Fig. 10. Viewpoint change for textured scene (a) repeatability  (b) convergence atio 
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Fig. 11. Scale rotation for structured scene (a) repeatability  (b) convergence ratio 
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 (a)                                                                           (b) 

Fig. 12. Blur for textured scene (a) repeatability   (b) convergence ratio 
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(a)                                                                          (b) 

Fig. 13. Light change (a) repeatability  (b) convergence ratio 
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Fig. 14. JPEG compression (a) repeatability  (b) convergence ratio 
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(c)                                                                           (d) 

Fig. 15. Matching score for (a) viewpoint change (b) scale changes light change (d) JPEG compression 
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Fig. 16. Iteration times comparison  (a) Ha-Affine  (b) HH-Affine 
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5. Conclusions 
In this paper, we have described how the overshoot phenomenon may arise when keeping the 
integration kernel shape linearly related to the shape determined by the second moment matrix. 
Especially when the anisotropy of the second moment matrix is larger, the overshoot 
phenomenon may lead to the oscillation of iterative process, thereby increasing the possibility 
of divergence of the iterative algorithm. 

A method for reducing the problem is presented by introducing a new iterative scheme with 
adaptive integration kernel. In the proposed scheme, the shape of the integration kernel in each 
iteration is determined by the anisotropy of the second moment matrix. To this end, we define 
two criteria for estimating the integration kernel: first, if an integration kernel is in accordance 
with a second moment matrix which shares a large anisotropy, then the integration kernel is 
given a low confidence level. Second, the estimated integration kernel is beneficial to reduce 
the anisotropy of the second moment matrix. Based on the above criteria, two functions (the 
one is linear and the other is non-linear) have been proposed to estimate and modify the shape 
of the integration kernel in each iteration. Finally, the establishment condition of fixed-point 
property for the local image regions obtained by the proposed scheme is also presented. To 
satisfy the condition, we have also taken some specific measures embodied in the design of the 
estimation functions and the final convergence criteria. In synthetic image data, as can be 
observed, the overshoot phenomenon of second moment matrix has been effectively 
suppressed when our approach is adopted.  

Whereas the discussion of the article is concerned with the second moment matrix, the 
underlying ideas can be extended to other structure metric matrices as long as they are affine 
invariant, i.e. affine Hessian matrix. Our method naturally fits in the framework that the 
feature detection matrix is same as the metric matrix. When the matrices are different, our 
method can still keep our performance advantage.  

Experiment results on the standard dataset demonstrate that we obtain small improvement 
in convergence ratio and repeatability as compared with Harris-Affine and 
Hessian-Hessian-Affine. In the future, we will further explore how to further improve the 
convergence stability by building a reasonable switching system based on the location changes 
of feature points and the aspect alterations of the integration scale matrices. 
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Appendix A. The affine invariance of affine Hessian matrix  
Affine Hessian matrix defined in affine Gaussian scale space is as follows  

( ( ; ))DH L= ∇ ∇ Σx  (25) 
which can be used to describe the anisotropic shape of blob-like structures and is affine 
invariant. 
 
Proof: 

Assume that two patches are related by an affine transformation R L=x Ax , and then the 
relation between their affine Gaussian scale-space representations is shown as follows: 

( ; ) ( ; )L L R RL RΣ = Σx x  (26) 
then: 
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This proves that affine Hessian matrix is affine invariant.  
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