• 제목/요약/키워드: Matrix burner

검색결과 13건 처리시간 0.025초

바이오가스 적용 캐비티 매트릭스 연소기 CFD 수치연산 (CFD Numerical Calcultion for a Cavity Matrix Combustor Applying Biogas)

  • 전영남;안준
    • 한국수소및신에너지학회논문집
    • /
    • 제33권5호
    • /
    • pp.598-606
    • /
    • 2022
  • With the advancement of industry, the use of various sustainable energy sources and solutions to problems affecting the environment are being actively requested. From this point of view, it is intended to directly burn unused biogas to use it as energy and to solve environmental problems such as greenhouse gases. In this study, a new type of cavity matrix combustor capable of low-emission complete combustion without complex facilities such as separation or purification of biogas produced in small and medium-sized facilities was proposed, and CFD numerical calculation was performed to understand the performance characteristics of this combustor. The cavity matrix combustor consists of a burner with a rectangular porous microwave receptor at the center inside a 3D cavity that maintains a rectangular parallelepiped shape composed of a porous plate that can store heat in the combustor chamber. As a result of numerical calculation, the biogas supplied to the inlet of the combustor is converted to CO and H2, which are intermediate products, on the surface of the 3D matrix porous burner. And then the optimal combustion process was achieved through complete combustion into CO2 and H2O due to increased combustibility by receiving heat energy from the microwave heating receptor.

3D-IR Matrix 버너 개질기를 활용한 모사 바이오가스 수증기 개질 연구 (The Study of Steam Reforming for Model Bioigas using 3D-IR Matrix Burner Reformer)

  • 임문섭;전영남
    • 한국수소및신에너지학회논문집
    • /
    • 제22권1호
    • /
    • pp.100-108
    • /
    • 2011
  • The use of biogas as an energy source reduces the chance of possible emission of two greenhouse gases, $CH_4$ and $CO_2$, into the atmosphere at the same time. Its nature of being a reproducible energy source makes its use even more attractive. This research if for the hydrogen production through the steam reforming of the biogas. The biogas utilized 3D-IR matrix burner in which the surface combustion is applied. The nickel catalyst was used inside a reformer. Parametric screening studies were achieved as Steam/Carbon ratio, biogas component ratio, Space velocity and Reformer temperature. When the condition of Steam/Carbon ratio, $CH_4/CO_2$ ratio, Space velocity and Refomer temperature were 3.25, 60%:40%, 19.32L/$g{\cdot}hr$ and $700^{\circ}C$ respectively, the hydrogen concentration and methane conversion rate were showed maximum values. Under the condition mentioned above, $H_2$ concentration was 73.9% and methane conversion rate was 98.9%.

Thermal Fatigue Behavior of 3D-Woven SiC/SiC Composite with Porous Matrix for Transpiration Cooling Passages

  • Hayashi, Toshimitsu;Wakayama, Shuichi
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.61-75
    • /
    • 2009
  • The effect of porous matrix on thermal fatigue behavior of 3D-orthogonally woven SiC/SiC composite was evaluated in comparison with that having relatively dense matrix. The porous matrix yields open air passages through its thickness which can be utilized for transpiration cooling. On the other hand, the latter matrix is so dense that the air passages are sealed. A quantity of the matrix was varied by changing the number of repetition cycles of the polymer impregnation pyrolysis (PIP). Strength degradation of composites under thermal cycling conditions was evaluated by the $1200^{\circ}C$/RT thermal cycles with a combination of burner heating and air cooling for 200 cycles. It was found that the SiC/SiC composite with the porous matrix revealed little degradation in strength during the thermal cycles, while the other sample showed a 25% decrease in strength. Finally it was demonstrated that the porous structure in 3D-SiC/SiC composite improved the thermal fatigue durability.

다공판 내의 예혼합연소 특성 해석 (Simulations of premixed combustion in porous media)

  • 신영준;이정원;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.253-255
    • /
    • 2012
  • This study has numerically investigated the combustion processes in the bilayer porous media. To account for the velocity transition and diffusion influenced by solid matrix, porosity effects are included in the governing equations. Heat transfer coefficient is calculated by Nusselt number to reflect the effect of gas velocity, pore diameter, and material properties. Numerical results indicate that the present approach is capable of the essential features of the premixed combustion in the porous burner, in terms of the precised flame structure, pollutant formation, and flame stabilization. It is also found that heat transferred from the downstream flame zone is conducted to the upstream flame region through the solid matrix and the preheated mixture. By increasing the inlet velocity, the solid temperature of upstream is cooling down.

  • PDF

세라믹 매트릭스 버너에 형성된 예혼합 화염의 NOx 및 CO 배출특성 (Nitric Oxide and Carbon Monoxide Emission from a Premixed Flame Stabilized in a Porous Ceramic Matrix Burner)

  • 정종수;이교우
    • 대한기계학회논문집B
    • /
    • 제20권10호
    • /
    • pp.3243-3250
    • /
    • 1996
  • Emission characteristics of nitric oxides and carbon monoxide from a porous media combustor has been experiment studied. The relationship between the change of flame shape and emission has also been examined. As the equivalence ratio decreases, the flame shape on the ceramic matrix plate changes from a diffusion flame, R(radiant)-type flame, to B(Blue)-type flame. With large fuel flow rate, R-type flame turns to be two dimensional R-II type flame around the equivalence of 0.7. Carbon monoxide emission increases very rapid with decreasing equivalence ratio. It changes a lot from some 10 ppm to 100-10,000 ppm with the change of flame type from R-I to R-II type. Nitric oxide emission from the premixed burner is less than 25 ppm over all range of fuel flow rate, which is less than 20% of NOx emission from conventional gas burners.

플라즈마-축열버너 부분산화 개질장치 (Partial Oxidation Reformer in a Plasma-Recuperative Burner)

  • 안준;전영남
    • 한국수소및신에너지학회논문집
    • /
    • 제32권1호
    • /
    • pp.68-76
    • /
    • 2021
  • Climate change problems occur during the use of fossil fuel and the process of biogas production. Research continues to convert carbon dioxide and methane, the major causes of climate change, into high-quality energy sources. in order to present the performance potential for the novel plasma-recuperative burner reformer, the reforming characteristics for each variable were indentified. The optimal operating condition of was an O2/C ratio of 1.0 and a total gas supply of 20 L/min. At this time, CH4 conversion was 64%, H2 selectivity was 39%, and H2/CO ratio was 1.13, which were the results applicable to the solid oxide fuel cell fuel stack for RPG, or Residential Power Generator. Recirculation of reformed gas increases the amount of H2 and CO, which are combustible gases, especially the amount of H2. As a result, the H2 selectivity is improved, and high-quality gas can be produced.

난류화염의 화학적 발광 특성에 관한 실험적 연구 (An Experimental Study on Chemiluminescence Characteristics of a Turbulent Flame)

  • 권민준;김세원;이창엽;김용모
    • 한국연소학회지
    • /
    • 제20권4호
    • /
    • pp.1-9
    • /
    • 2015
  • The object of this study is a deriving the relations according to the measuring locations between the chemiluminescence and the flame state at commercial burner. In this study, the flame chemiluminescence of the flame of commercial burner is measured using a photomultiplier tube and the optical band-pass filter. In addition, the contour of the chemiluminescence of the flame is measured using the common CCD camera and the optical band-pass filters, and the acquired images is converted by the simple image processing as a matrix form. The results showed that certain relationship between optical data and equivalence ratio exists, and the contour according to the measuring location of the flame chemiluminescence is different by equivalence ratio.

SOFC 스택 적용 마이크로웨이브-매트릭스 개질기 개발 (Development of Microwave-Matrix Reformer for Applying SOFC Stack)

  • 안준;전영남
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.534-541
    • /
    • 2021
  • In this study, a novel microwave-matrix reformer was proposed to convert CH4, which is a major component, to a high quality hydrogen energy. And to identify this performance, it was investigated for O2/C ratio, steam feed amount and reformed gas recirculation which are affected for methane conversion and product gas yield. Through the parametric screening studies, optimal operating conditions were that O2/C ratio, steam feed amount and recirculation rate were 1.1, 10 mL/min and 30 L/min. In this conditions, CH4 conversion was 68.1%, H2 selectivity 77.2 and H2/CO ratio 2.62 which are possible applying SOFC stack for RPG (residential power generator).

3D IR 매트릭스 버너에 의한 모사 바이오가스 촉매 개질 연구 (The Study of Model Biogas Catalyst Reforming Using 3D IR Matrix Burner)

  • 임문섭;전영남
    • 대한환경공학회지
    • /
    • 제34권12호
    • /
    • pp.840-846
    • /
    • 2012
  • 현재 이산화탄소에 의한 지구기후변화는 세계적으로 논의되고 있다. 화석연료를 대신할 수 있는 청정 연료를 찾고 있다. 에너지 생산을 위한 지속가능한 바이오가스 사용은 이산화탄소 배출에 기여하지 않아 온난화가스를 줄이는데 높은 잠재력을 가지고 있다. 모사 바이오가스(메탄 : 이산화탄소 = 60% : 40%)를 이용한 높은 수소 합성가스 생산을 위한 촉매 수증기 개질연구를 하였다. 표면연소의 3D 적외선 매트릭스 버너에 바이오가스를 적용하였다. 개질기에는 Ru 촉매를 이용하였다. 변수별 연구로 수증기/탄소 비, 바이오가스 성분비, 공간속도, 개질기 온도를 진행하였다. 수증기/탄소 비, 바이오가스 성분비, 공간속도, 개질기 온도가 각각 3.25, 60% : 40%, $14.7L/g{\cdot}hr$, $550^{\circ}C$일 때, 수소 농도, 메탄 전환율이 최대값을 나타내었다. 위 조건에서 수소 수율, 수소/일산화탄소 비, 일산화탄소 선택도, 에너지 효율은 0.65, 2.14, 0.59, 51.29%를 나타내었다.

폐타이어 시편의 연소 특성 및 착화지연에 관한 실험적 연구 (An Experimental Study on Burning Time and Ignition Delay of Waste Tire Chips in High Temperature Environments)

  • 정종수;박은성;박종원
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1833-1839
    • /
    • 1994
  • Experiments have been carried out to investigate the burning characteristics of waste tires in high temperature environments. The burning of waste tire chips consists of four stages ; evaporation of volatile matters, ignition, burning of volatile matters, and burning of solid carbon. Burning time of waste tire chips depends on the gas temperature and the initial weight of the chip. However, the environments. In the ceramic matrix burner with a ceramic radiation shield, the burning time of the waste tire chips becomes shorter than that without the shield. This is due to the increase in heat transfer to the tire chips by radiation.