• Title/Summary/Keyword: Matrix bands

Search Result 102, Processing Time 0.03 seconds

Enhanced plasticity in a bulk amorphous matrix composite

  • Lee, Jae-Chul;Kim, Yu-Chan;Ahn, Jae-Pyoung;Kim, Hyoung-Seop
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.54-54
    • /
    • 2003
  • We have developed a Cu-based bulk amorphous composite reinforced with a micron-sized crystalline phase, the (Cu60Zr30Ti10)95Ta5 amorphous matrix composite. The composite demonstrates the ultimate strength of 2332 MPa with a dramatically enhanced fracture strain of 15.3 %. Macroscopic observation of the fractured (Cu60Zr30Ti10)95Ta5 amorphous matrix composite showed the development of multiple shear bands along with numerous branching and deflection of shear bands. Microscopic observation on the amorphous matrix of the composite showed that cracks propagate through the residual amorphous matrix located between nanocrystallites, which had formed during deformation. Simulations based on finite element method were conducted to understand the formation mechanisms of multiple shear bands, the initiation site of shear bands, and interaction of shear bands with crystalline particles. Other microscopic fracture mechanism responsible for the enhanced plasticity was discussed.

  • PDF

CLASS II COMPOSITE RESIN RESTORATION USING ORTHODONTIC BANDS (교정용 밴드를 이용한 구치부 2급 와동의 복합레진 수복)

  • Park, Sung-Dong;Park, Ki-Tae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.1
    • /
    • pp.13-17
    • /
    • 2005
  • Children and teenagers have a higher frequency of proximal surface caries in the posterior teeth than adults. For proximal restoration, class II amalgam or stainless steel crown has been widely used in the past, however composite resin restoration is getting ore popular due to it's superior cosmetic appearance. When applying composite resin on proximal area, various types of matrix bands can be utilized according to the operator's reference or skill. Such bands have several clinical effects including suitability for proximal margin, reduction of micro-leakage, moisture-control against saliva and ease finishing and polishing. In this case report, orthodontic bands were utilized instead of matrix bands as a remedy for proximal restorations in both primary and permanent teeth and their clinical advantages are as follows. 1. Orthodontic bands showed superior marginal adaptation compared to conventional matrix bands and moisture-control against saliva was excellent. 2. While applying composite resin, deformation of restoration material was estimated to be insignificant due to he rigidity of the orthodontic bands. 3. Natural tooth contour of the orthodontic bands facilitates to reproduce proximal tooth contour of the restoration. 4. In general, pediatric dentists are accustomed to applying orthodontic bands and this may allow pediatric dentists to make proximal composite restorations more efficiently than other dental specialists.

  • PDF

Improved Multi-band Transfer Matrix Method for Calculating Eigenvalues and Eigenfunctions of Quantum Well and Superlattice Structures

  • Kim, Byoung-Whi;Jun, Yong-Il;Jung, Hee-Bum
    • ETRI Journal
    • /
    • v.20 no.4
    • /
    • pp.361-379
    • /
    • 1998
  • We present an improved transfer matrix algorithm which can be used in solving general n-band effective-mass $Schr{\ddot{o}}dinger$ equation for quantum well structures with arbitrary shaped potential profiles(where n specifies the number of bands explicitly included in the effective-mass equation). In the proposed algorithm, specific formulas are presented for the three-band (the conduction band and the two heavy- and light-hole bands) and two-band (the heavy- and light-hole bands) effective-mass eigensystems. Advantages of the present method can be taken in its simple and unified treatment for general $n{\times}n$ matrix envelope-function equations, which requires relatively smaller computation efforts as compared with existing methods of similar kind. As an illustration of application of the method, numerical computations are performed for a single GaAs/AlGaAs quantum well using both the two-band and three-band formulas. The results are compared with those obtained by the conventional variational procedure to assess the validity of the method.

  • PDF

Watermark Algorithm Using Difference Matrix between Successive Blocks (연속 블록간의 화소차이 행렬을 이용한 워터마크 알고리즘)

  • Park, Ki-Hong;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.3
    • /
    • pp.273-279
    • /
    • 2008
  • In this paper, we proposed a watermarking algorithm by using difference matrix between successive blocks in the transform domain. In the preprocessing, original image is decomposed with 1-level sub-bands by DWT. Then, all sub-bands which are excepted the low-frequency bands are set to normalize and make a reference image after transforming inverse DWT. The statistic variance of successive blocks between the original image and the reference image are calculated and finally, watermark is embedded considering the local characteristic with respect to the high-frequence components. Experimental results showed that the proposed approach is robust and better invisible in such attacks as filtering, JPEG and noise addition.

  • PDF

Genetic variation and relationship of Artemisia capillaris Thunb.(Compositae) by RAPD analysis

  • Kim, Jung-Hyun;Kim, Dong-Kap;Kim, Joo-Hwan
    • Korean Journal of Plant Resources
    • /
    • v.22 no.3
    • /
    • pp.242-247
    • /
    • 2009
  • Randomly Amplified Polymorphic DNA (RAPD) was performed to define the genetic variation and relationships of Artemisia capillaris. Fifteen populations by the distributions and habitat were collected to conduct RAPD analysis. RAPD markers were observed mainly between 300bp and 1600bp. Total 72 scorable markers from 7 primers were applied to generate the genetic matrix, and 69 bands were polymorphic and only 3 bands were monomorphic. The genetic dissimilarity matrix by Nei's genetic distance (1972) and UPGMA phenogram were produced from the data matrix. Populations of Artemisia capillaris were clustered with high genetic affinities and cluster patterns were correlated with distributional patterns. Two big groups were clustered as southern area group and middle area group. The closest OTUs were GW2 and GG1 in middle area group, and GB1 from southern area group was clustered with OTUs in middle area group. RAPD data was useful to define the genetic variations and relationships of A. capillaris.

Matrix Infrared Spectra and DFT Computations of CH2CNH and CH2NCH Produced from CH3CN by Laser-Ablation Plume Radiation

  • Cho, Han-Gook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1361-1365
    • /
    • 2013
  • The smallest ketenimine and hydrogen cyanide N-methylide ($CH_2CNH$ and $CH_2NCH$) are provided from the argon/acetonitrile matrix samples exposed to radiation from laser ablation of transition-metals. New infrared bands are observed in addition to better determination of the vibrational characteristics for the previously reported bands, and the $^{13}C$ substituted isotopomers ($^{13}{CH_2}^{13}CNH$ and $^{13}CH_2N^{13}CH$) are also generated. Density functional frequency calculations and the D and $^{13}C$ isotopic shifts substantiate the vibrational assignments. $CH_2CNH$ is probably produced through single-step conversion of $CH_3CN$, whereas $CH_2NCH$ through two-step conversion via 2H-azirine. Inter-conversions between these two products evidently do not occur during photolysis and annealing.

Microfracture Behavior of Metallic-Continuous-Fiber-Reinforced Amorphous Matrix Composites Fabricated by Liquid Pressing Process (액상가압공정으로 제조된 금속 연속섬유강화 비정질 복합재료의 미세파괴거동)

  • Lee, Kyuhong;Lee, Sang-Bok;Lee, Sang-Kwan;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.524-537
    • /
    • 2008
  • Zr-based amorphous alloy matrix composites reinforced with metallic continuous fibers were fabricated by liquid pressing process, and their fracture properties were investigated by directly observing microfracture process using an in situ loading stage installed inside a scanning electron microscope chamber. About 60 vol.% of metallic fibers were homogeneously distributed inside the amorphous matrix. Apparent fracture toughness of the stainless-steel- and tungsten-fiber-reinforced composites was lower than that of monolithic amorphous alloy, while that of the Ta-fiber-reinforced composite was higher. According to the microfracture observation, shear bands or cracks were initiated at the amorphous matrix, and the propagation of the initiated shear bands or cracks was effectively blocked by fibers, thereby resulting in stable crack growth which could be confirmed by the fracture resistance curve (R-curve) behavior. This increase in fracture resistance with increasing crack length improved fracture properties of the fiber-reinforced composites, and could be explained by mechanisms of formation of multiple shear bands or multiple cracks at the amorphous matrix and blocking of crack or shear band propagation and multiple necking at metallic fibers.

Microstructure and Mechanical Properties of Tantalum-Continuous-Fiber-Reinforced Amorphous Matrix Composites Fabricated by Liquid Pressing Process (액상가압공정으로 제조된 탄탈륨 연속섬유 강화 비정질 복합재료의 미세조직과 기계적 성질)

  • Lee, Kyuhong;Lee, Sang-Bok;Lee, Sang-Kwan;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.403-411
    • /
    • 2008
  • Zr-based amorphous alloy matrix composites reinforced with tantalum continuous fibers were fabricated by liquid pressing process, and their microstructures and mechanical properties were investigated. About 60 vol.% of tantalum fibers were homogeneously distributed inside the amorphous matrix, which contained a small amount of polygonal crystalline particles. The ductility of the tantalum-continuous-fiber-reinforced composite under tensile or compressive loading was dramatically improved over that of the monolithic amorphous alloy, while maintaining high strength. The consequential observation of the tensile deformation and fracture behavior of the composite showed the formation of multiple shear bands and multiple necking, crack deflection in the amorphous matrix, and obstruction of crack propagation by ductile fibers, thereby resulting in very high tensile elongation of 7.2%. These findings suggested that the liquid pressing process was useful for the development of amorphous matrix composites with improved ductility.

Robust Digital Watermarking for High-definition Video using Steerable Pyramid Transform, Two Dimensional Fast Fourier Transform and Ensemble Position-based Error Correcting

  • Jin, Xun;Kim, JongWeon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3438-3454
    • /
    • 2018
  • In this paper, we propose a robust blind watermarking scheme for high-definition video. In the embedding process, luminance component of each frame is transformed by 2-dimensional fast Fourier transform (2D FFT). A secret key is used to generate a matrix of random numbers for the security of watermark information. The matrix is transformed by inverse steerable pyramid transform (SPT). We embed the watermark into the low and mid-frequency of 2D FFT coefficients with the transformed matrix. In the extraction process, the 2D FFT coefficients of each frame and the transformed matrix are transformed by SPT respectively, to produce two oriented sub-bands. We extract the watermark from each frame by cross-correlating two oriented sub-bands. If a video is degraded by some attacks, the watermarks of frames contain some errors. Thus, we use an ensemble position-based error correcting algorithm to estimate the errors and correct them. The experimental results show that the proposed watermarking algorithm is imperceptible and moreover is robust against various attacks. After embedding 64 bits of watermark into each frame, the average peak signal-to-noise ratio between original frames and embedded frames is 45.7 dB.

Influence of Stress-strain on the Microstructural Change in the Metallic Glass and Metallic Glass Matrix Composite

  • Kim, Song-Yi;Lee, A-Young;Oh, Hye-Ryung;Lee, Min-Ha
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.44-51
    • /
    • 2015
  • At room temperature, metallic glasses deform inhomogeneously by strain localization into narrow bands as a result of yielding due to an external force. When shear bands are generated during deformation, often nanocrystals form at the shear bands. Experimental results on the deformation of bulk metallic glass in the current study suggest that the occurrence of nanocrystallization at a shear band implies the loading condition that induces deformation is more triaxial in nature than uniaxial. Under a compressive stress state, the geometrical constraint strain imposed by the stress triaxiality plays a crucial role in the deformation-induced nanocrystallization at the shear bands.