Microfracture Behavior of Metallic-Continuous-Fiber-Reinforced Amorphous Matrix Composites Fabricated by Liquid Pressing Process

액상가압공정으로 제조된 금속 연속섬유강화 비정질 복합재료의 미세파괴거동

  • Lee, Kyuhong (Center for Advanced Aerospace Materials Pohang University of Science and Technology) ;
  • Lee, Sang-Bok (Composite Materials Laboratory Korea Institute of Materials Science) ;
  • Lee, Sang-Kwan (Composite Materials Laboratory Korea Institute of Materials Science) ;
  • Lee, Sunghak (Center for Advanced Aerospace Materials Pohang University of Science and Technology)
  • 이규홍 (포항공과대학교 항공재료연구센터) ;
  • 이상복 (한국기계연구원 부설 재료연구소 복합재료팀) ;
  • 이상관 (한국기계연구원 부설 재료연구소 복합재료팀) ;
  • 이성학 (포항공과대학교 항공재료연구센터)
  • Received : 2008.06.23
  • Published : 2008.08.25

Abstract

Zr-based amorphous alloy matrix composites reinforced with metallic continuous fibers were fabricated by liquid pressing process, and their fracture properties were investigated by directly observing microfracture process using an in situ loading stage installed inside a scanning electron microscope chamber. About 60 vol.% of metallic fibers were homogeneously distributed inside the amorphous matrix. Apparent fracture toughness of the stainless-steel- and tungsten-fiber-reinforced composites was lower than that of monolithic amorphous alloy, while that of the Ta-fiber-reinforced composite was higher. According to the microfracture observation, shear bands or cracks were initiated at the amorphous matrix, and the propagation of the initiated shear bands or cracks was effectively blocked by fibers, thereby resulting in stable crack growth which could be confirmed by the fracture resistance curve (R-curve) behavior. This increase in fracture resistance with increasing crack length improved fracture properties of the fiber-reinforced composites, and could be explained by mechanisms of formation of multiple shear bands or multiple cracks at the amorphous matrix and blocking of crack or shear band propagation and multiple necking at metallic fibers.

Keywords

Acknowledgement

Grant : 전단파괴 제어를 통한 고성능 비정질 복합재료 개발

Supported by : 재료연구소, 한국과학재단, 지식경제부

References

  1. J. G. Lee, S. S. Park, D. G. Lee, S. Lee and N. J. Kim, Intermetallics 12, 1125 (2004) https://doi.org/10.1016/j.intermet.2004.04.022
  2. L. Q. Xing, C. Bertrand, J. P. Dallas and M. Cornet, Mater. Sci. Eng. A 241, 216 (1998) https://doi.org/10.1016/S0921-5093(97)00489-9
  3. C. C. Hays, C. P. Kim and W. L. Johnson, Phys. Rev. Lett. 84, 1901 (2000)
  4. H. Choi-Yim and W. L. Johnson, Appl. Phys. Lett. 71, 3808 (1997) https://doi.org/10.1063/1.120512
  5. Y. K. Xu and J. Xu, Scripta Mater. 49, 843 (2003) https://doi.org/10.1016/S1359-6462(03)00447-0
  6. R. D. Conner, R.B. Dandliker and W.L. Johnson, Acta Mater. 46, 6089 (1998) https://doi.org/10.1016/S1359-6454(98)00275-4
  7. Y. F. Xue, H. N. Cai, L. Wang, F. C. Wang and H. F. Zhang, Mater. Sci. Eng. A 445-446, 275 (2007) https://doi.org/10.1016/j.msea.2006.09.025
  8. Y. H. Jang, S. S. Kim, Y. C. Jung and S. K. Lee, J. Kor. Inst. Met. & Mater. 42, 425 (2004)
  9. A. Peker and W. L. Johnson, Appl. Phys. Lett. 63, 2342 (1993) https://doi.org/10.1063/1.110520
  10. W. H. Wang, C. Dong and C. H. Shek, Mater. Sci. Eng. R 44, 45 (2004) https://doi.org/10.1016/j.mser.2004.03.001
  11. Q. Wei, N. Wanderka, P. Schubert-Bischoff, M-P. Macht and S. Friedrich, J. Mater. Res. 15, 1729, (2000) https://doi.org/10.1557/JMR.2000.0249
  12. S. Lee, K. S. Sohn, C. G. Lee and B. I. Jung, Metall. Mater. Trans. A, 28A, 123 (1997)
  13. R. O. Ritchie and R. M. Horn, Metall. Trans. A, 9A, 331 (1978)
  14. Y.-H. Kim, D. Kwon and S. Lee, Acta Metall. Mater. 42, 1887 (1994) https://doi.org/10.1016/0956-7151(94)90013-2
  15. S. B. Lee, K. Lee, S. K. Lee and S. Lee, J. Kor. Inst. Met. & Mater. 45, 435 (2007)
  16. K. Lee, S. B. Lee, S. K. Lee and S. Lee, Metall. Mater. Trans. A 39, 1319 (2008) https://doi.org/10.1007/s11661-008-9528-z
  17. K. Lee, S. B. Lee, S. K. Lee and S. Lee, Metall. Mater. Trans. A (2008) Submitted
  18. Y. Kawamura, T. Shibata, A. Inoue and T. Masumoto, Appl. Phys. Lett. 69, 1208 (1996) https://doi.org/10.1063/1.117413
  19. A. Inoue, T. Zhang and T. Masumoto, Mater. Trans. JIM 36, 391 (1995) https://doi.org/10.2320/matertrans1989.36.391
  20. H. Choi-Yim, R. Busch, U. Koster and W.L. Johnson, Acta Mater. 47, 2455 (1999) https://doi.org/10.1016/S1359-6454(99)00103-2
  21. J. Zhang and C. Laird, Acta Mater. 49, 109 (2001) https://doi.org/10.1016/S1359-6454(00)00283-4
  22. D. Broek, Elementary Engineering Fracture Mechanics, Martinus Nijhoff Pub. (1983)
  23. Y. Mutoh, K. Ichikawa, K. Nagata and M. Takeuchi, J. Mater. Sci. 30, 770 (1995) https://doi.org/10.1007/BF00356341
  24. R. Ayres and D.F. Stein, Acta Metall. 19, 789 (1971) https://doi.org/10.1016/0001-6160(71)90135-0