• Title/Summary/Keyword: Matrix Vector

Search Result 759, Processing Time 0.026 seconds

Inelastic vector finite element analysis of RC shells

  • Min, Chang-Shik;Gupta, Ajaya Kumar
    • Structural Engineering and Mechanics
    • /
    • v.4 no.2
    • /
    • pp.139-148
    • /
    • 1996
  • Vector algorithms and the relative importance of the four basic modules (computation of element stiffness matrices, assembly of the global stiffness matrix, solution of the system of linear simultaneous equations, and calculation of stresses and strains) of a finite element computer program for inelastic analysis of reinforced concrete shells are presented. Performance of the vector program is compared with a scalar program. For a cooling tower problem, the speedup factor from the scalar to the vector program is 34 for the element stiffness matrices calculation, 25.3 for the assembly of global stiffness matrix, 27.5 for the equation solver, and 37.8 for stresses, strains and nodal forces computations on a Gray Y-MP. The overall speedup factor is 30.9. When the equation solver alone is vectorized, which is computationally the most intensive part of a finite element program, a speedup factor of only 1.9 is achieved. When the rest of the program is also vectorized, a large additional speedup factor of 15.9 is attained. Therefore, it is very important that all the modules in a nonlinear program are vectorized to gain the full potential of the supercomputers. The vector finite element computer program for inelastic analysis of RC shells with layered elements developed in the present study enabled us to perform mesh convergence studies. The vector program can be used for studying the ultimate behavior of RC shells and used as a design tool.

Automation of 3 Dimensional Beam Modeling based on Finite Element Formulation for Elastic Boom of a Floating Crane (해상 크레인 탄성 붐 적용을 위한 3D 빔(beam) 유한 요소 정식화 및 자동화)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul;Ham, Seung-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.6
    • /
    • pp.411-417
    • /
    • 2010
  • In this paper, the boom of a floating crane is modeled as a 3-dimensional elastic beam in order to analyze the dynamic response of the crane and its cargo. The boom is divided into more than two elements based on finite element formulation, and deformation of each element is expressed in terms of shape matrix and nodal coordinates. The equations of motion for the elastic boom consist of a mass matrix, a stiffness matrix, and a quadratic velocity vector that contains the gyroscopic and Coriolis forces. The size and complicity of the matrices increase in proportion with the number of elements. Therefore, it is not possible to derive the equations of motion explicitly for different number of elements. To overcome this difficulty, matrices for one 3-dimensional element are expressed with elementary sub-matrices. In particular, the quadratic velocity vector is derived as a product of a shape matrix and a 3-dimensional rotation matrix. By using the derived matrices, the equations of motion for the multi-element boom are automatically constructed. To verify the implementation of the elastic boom based on finite element formulation, we simulated a simple vibration of the elastic boom and compared the average deformation with the analytic solution. Finally, heave motion of the floating crane and surge motion of the cargo are presented as application examples of the elastic boom.

Design and Implementation of Matrix Converter Based on Space Vector Modulation (SVM를 적용한 매트릭스 컨버터의 설계 및 구현)

  • Yang Chun-Suk;Yoon In-Sik;Kim Kyung-Seo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.550-559
    • /
    • 2005
  • The matrix converter provides sinusoidal input and output wave forms, bidirectional power flow, controllable input power factor and a long life, compared to the VSI(Voltage Source Inverter) with diode rectification stage at the input. However it has tasks, such as complexity of the control method, ride-through problem and low voltage-ratio limitation, to overcome for commercializing, This paper describes the design, construction and implementation of matrix converter based on space vector modulation technique. The implemented prototype of matrix converter is built using the exclusive IGBT module and control circuit constituted with DSP and CPLD and it has an input filter, overvoltage protection circuit and commutation means for overcoming practical issues. The good results tested using an induction motor are also presented.

Pseudo Complex Correlation Coefficient: with Application to Correlated Information Sources for NOMA in 5G systems

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.42-51
    • /
    • 2020
  • In this paper, the authors propose the pseudo complex correlation coefficient (PCCC) of the two complex random variables (RV), because the four real correlation coefficients (RCC) of the corresponding four real RVs cannot be obtained only from the complex correlation coefficient (CCC) of given two complex RV. Such observation is motivated by the general statement; "The complex jointly-Gaussian random M-vector cannot be completely described by the complex covariance matrix, even though the real Gaussian random 2M-vector can be completely descried by the real covariance matrix. Therefore, in order to describe completely the complex jointly-Gaussian random M-vector, we need an additional matrix, namely the complex pseudo-covariance matrix, along with the complex covariance matrix." Then, we apply PCCC to correlated information sources (CIS) for non-orthogonal multiple access (NOMA) in 5G system, and investigate impact of the proposed PCCC on the achievable data rate of the stronger channel user in the conventional successive interference cancellation (SIC) NOMA with CIS. It is shown that for the given same CCC, the achievable data rates with the different PCCC are different, because the corresponding RCC are different. We also show that as the absolute value of the same CCC increases, the impact of the different PCCC becomes more significant.

The Enhanced Analysis Algorithm for an EMFG's Operation (EMFG의 개선된 동작해석 알고리즘)

  • Kim, Hee-Jung;Yeo, Jeong-Mo;Seo, Kyung-Ryong
    • The KIPS Transactions:PartA
    • /
    • v.9A no.3
    • /
    • pp.371-378
    • /
    • 2002
  • The EMFG (Extended Mark Flow Graph) is known as a graph model for representing the discrete event systems. In this paper, we introduce input/output matrixes representing the marking variance of input/output boxes when each transition fires in an EMFG, and compute an incidence matrix. We represent firing conditions of transitions to a firing condition matrix for computing a firable vector, and introduce the firing completion vector to decide completion of each transition’s firing. By using them, we improve an analysis algorithm of the EMFG’s operation to be represented all the process of EMFG’s operation mathematically. We apply the proposed algorithm to the system repeating the forward and reverse revolution, and then confirm that it is valid. The proposed algorithm is useful to analysis the variant discrete event systems.

Wideband adaptive beamforming method using subarrays in acoustic vector sensor linear array (부배열을 이용한 음향벡터센서 선배열의 광대역 적응빔형성기법)

  • Kim, Jeong-Soo;Kim, Chang-Jin;Lee, Young-Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.395-402
    • /
    • 2016
  • In this paper, a wideband adaptive beamforming approach for an acoustic vector sensor linear array is presented. It is a very important issue to estimate the stable covariance matrix for adaptive beamforming. In the conventional wideband adaptive beamforming based on coherent signal-subspace (CSS) processing, the error of bearing estimates is resulted from the focusing matrix estimation and the large number of data snapshot is necessary. To alleviate the estimation error and snapshot deficiency in estimating covariance matrix, the steered covariance matrix method in the pressure sensor is extended to the vector sensor array, and the subarray technique is incorporated. By this technique, more accurate azimuth estimates and a stable covariance matrix can be obtained with a small number of data snapshot. Through simulation, the azimuth estimation performance of the proposed beamforming method and a wideband adaptive beamforming based on CSS processing are assessed.

Analysis of 3-phase Induction Motor considering Current Regulator using DQ Transformation with Matrix Vector

  • Hong, Sun-Ki;Na, Yoo-Chung
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.116-120
    • /
    • 2014
  • 3-phase Induction machines are being used in industry and dq transformation from 3 phase of a, b, c is commonly used to analyze these machines. The equivalent circuits of d and q axis are however generally cross coupled and not simple to analyze. In this study, an analysis method of 3ph induction motor considering current regulator using dq transformation and matrix vector is proposed and it can explain the 3ph induction motor physically. This model does not need the separating process of d and q components. With this technique, the model becomes simple, is easy to understand in physical, and can get the same results with those from the other dq models. These simulation results of the proposed model are compared with those of other models for the conformation of the proposed method.

The Improvements of Vehicle Vibration Characteristics Using Modal Contribution (모우드 기여도 분석을 이용한 차량의 진동특성 개선)

  • 안지훈;지상현;고병식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.51-56
    • /
    • 1998
  • This paper presents modal contribution method to reduce vehicle vibration. Normal mode analysis is performed to obtain modal vector matrix. The proposed method uses this modal vector matrix to evaluate forced response of an active mode to the applied engine forces and the rotating force due to wheel unbalance mass. Comparing the responses, of the specific active mode with one another, it can be easily done to determine most contributed mode in the interesting frequency band. Then we can find dominant bushes by the strain energy distribution of the mode. Vibration response is decrease with modification of those bushes.

  • PDF

Estimators Shrinking towards Projection Vector for Multivariate Normal Mean Vector under the Norm with a Known Interval

  • Baek, Hoh Yoo
    • Journal of Integrative Natural Science
    • /
    • v.11 no.3
    • /
    • pp.154-160
    • /
    • 2018
  • Consider the problem of estimating a $p{\times}1$ mean vector ${\theta}(p-r{\geq}3)$, r = rank(K) with a projection matrix K under the quadratic loss, based on a sample $Y_1$, $Y_2$, ${\cdots}$, $Y_n$. In this paper a James-Stein type estimator with shrinkage form is given when it's variance distribution is specified and when the norm ${\parallel}{\theta}-K{\theta}{\parallel}$ is constrain, where K is an idempotent and symmetric matrix and rank(K) = r. It is characterized a minimal complete class of James-Stein type estimators in this case. And the subclass of James-Stein type estimators that dominate the sample mean is derived.

Improved Space Vector Modulation Strategy for AC-DC Matrix Converters

  • Liu, Xiao;Zhang, Qingfan;Hou, Dianli;Wang, Siyao
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.647-655
    • /
    • 2013
  • In this paper, an approach to reduce the common-mode voltage and to eliminate narrow pulse for implemented AC-DC matrix converters is presented. An improved space vector modulation (SVM) strategy is developed by replacing the zero space vectors with suitable pairs of active ones. Further, while considering the commutation time, the probability of narrow pulse in the conventional and proposed SVM methods are derived and compared. The advantages of the proposed scheme include: a 50% reduction in the peak value of the common-mode voltage; improved input and output performances; a reduction in the switching loss by a reduced number of switching commutations and a simplified implementation via software. Experimental results are presented to demonstrate the correctness of the theoretical analysis, as well as the feasibility of the proposed strategy.