DOI QR코드

DOI QR Code

Pseudo Complex Correlation Coefficient: with Application to Correlated Information Sources for NOMA in 5G systems

  • Received : 2020.09.16
  • Accepted : 2020.09.23
  • Published : 2020.12.31

Abstract

In this paper, the authors propose the pseudo complex correlation coefficient (PCCC) of the two complex random variables (RV), because the four real correlation coefficients (RCC) of the corresponding four real RVs cannot be obtained only from the complex correlation coefficient (CCC) of given two complex RV. Such observation is motivated by the general statement; "The complex jointly-Gaussian random M-vector cannot be completely described by the complex covariance matrix, even though the real Gaussian random 2M-vector can be completely descried by the real covariance matrix. Therefore, in order to describe completely the complex jointly-Gaussian random M-vector, we need an additional matrix, namely the complex pseudo-covariance matrix, along with the complex covariance matrix." Then, we apply PCCC to correlated information sources (CIS) for non-orthogonal multiple access (NOMA) in 5G system, and investigate impact of the proposed PCCC on the achievable data rate of the stronger channel user in the conventional successive interference cancellation (SIC) NOMA with CIS. It is shown that for the given same CCC, the achievable data rates with the different PCCC are different, because the corresponding RCC are different. We also show that as the absolute value of the same CCC increases, the impact of the different PCCC becomes more significant.

Keywords

References

  1. L. Chettri and R. Bera, "A comprehensive survey on internet of things (IoT) toward 5G wireless systems," IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16-32, Jan. 2020. DOI: https://doi.org/10.1109/JIOT.2019.2948888
  2. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, "Non-orthogonal multiple access (NOMA) for cellular future radio access," in Proc. IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1-5, 2013. DOI: https://doi.org/10.1109/VTCSpring.2013.6692652
  3. Z. Ding, P. Fan, and H. V. Poor, "Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions," IEEE Trans. Veh. Technol., vol. 65, no. 8, pp. 6010-6023, Aug. 2016. DOI: https://doi.org/10.1109/TVT.2015.2480766
  4. Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. Bhargava, "A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends," IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2181-2195, Oct. 2017. DOI: https://doi.org/10.1109/JSAC.2017.2725519
  5. S. Kim, "Link adaptation for full duplex systems," International Journal of Advanced Smart Convergence (IJASC), vol. 7, no. 4, pp. 92-100, Dec. 2018. DOI: http://dx.doi.org/10.7236/IJASC.2018.7.4.92
  6. S. Kim, "Switching between spatial modulation and quadrature spatial modulation," International Journal of Advanced Smart Convergence (IJASC), vol. 8, no. 3, pp. 61-68, Sep. 2019. DOI: http://dx.doi.org/10.7236/IJASC.2019.8.3.61
  7. S. Kim, "Transmit antenna selection for quadrature spatial modulation systems with power allocation," International Journal of Advanced Smart Convergence (IJASC), vol. 9, no. 1, pp. 98-108, Mar. 2020. DOI: http://dx.doi.org/10.7236/IJASC.2020.9.1.98
  8. Z. Chen, Z. Ding, X. Dai, and R. Zhang, "An optimization perspective of the superiority of NOMA compared to conventional OMA," IEEE Trans. Signal Process., vol. 65, no. 19, pp. 5191-5202, Oct. 2017. DOI: https://doi.org/10.1109/TSP.2017.2725223
  9. Z. Yong, V. W. S. Wong, and R. Schober, "Stable throughput regions of opportunistic NOMA and cooperative NOMA with full-duplex relaying," IEEE Trans. Wireless Commun., vol. 17, no. 8, pp. 5059-5075, Aug. 2018. DOI: https://doi.org/10.1109/TWC.2018.2837014
  10. M. Jain, N. Sharma, A. Gupta, D. Rawal, and P. Garg, "Performance analysis of NOMA assisted underwater visible light communication system," IEEE Wireless Commun. Lett., vol. 9, no. 8, pp. 1291-1294, Aug. 2020. DOI: https://doi.org/10.1109/LWC.2020.2988887
  11. Z. Sun, Y. Jing, and X. Yu, "NOMA design with power-outage tradeoff for two-user systems," IEEE Wireless Commun. Lett., vol. 9, no. 8, pp. 1278-1282, Aug. 2020. DOI: https://doi.org/10.1109/LWC.2020.2987992
  12. M. Aldababsa, C. Goztepe, G. K. Kurt, and O. Kucur, "Bit Error Rate for NOMA Network," IEEE Commun. Lett., vol. 24, no. 6, pp. 1188-1191, Jun. 2020. DOI: https://doi.org/10.1109/LCOMM.2020.2981024
  13. A.-A.-A. Boulogeorg, N. D. Chatzidiamantis, and G. K. Karagiannid, "on-orthogonal multiple access in the presence of phase noise," IEEE Commun. Lett., vol. 24, no. 5, pp. 1133-1137, May. 2020. DOI: https://doi.org/10.1109/LCOMM.2020.2978845
  14. K. Chung, "NOMA for Correlated Information Sources in 5G Systems," IEEE Commun. Lett., Sep. 2020. (Early Access) DOI: https://doi.org/10.1109/LCOMM.2020.3027726