• Title/Summary/Keyword: Matrix Structure

Search Result 2,555, Processing Time 0.03 seconds

Matrix Star Graphs: A New Interconnection Networks Improving the Network Cost of Star Graphs (행렬 스타 그래프: 스타 그래프의 망 비용을 개선한 새로운 상호 연결망)

  • 이형옥;최정임형석
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.467-470
    • /
    • 1998
  • In this paper, we propose a matrix star graph which improves the network cost of the well-known star grah as an interconnection network. We analyze its characteristics in terms of the network parameters, such as degree, scalability, routing, and diameter. The proposed matrix star graph MS2,n has the half degrees of a star graph S2n with the same number of nodes and is an interconnection network with the properties of node symmetry, maximum fault tolerance, and recursive structure. In network cost, a matrix star graph MS2,n and a star graph S2n are about 3.5n2 and 6n2 respectively which means that the former has a better value by a certain constant than the latter has.

  • PDF

Analytic Solution to the Spatial Propagation of the Flexible Structures (유연한 구조물의 공간전파에 관한 해석적 해법)

  • Seok, Jin-Yeong;Jeong, Eun-Tae;Kim, Yu-Dan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2040-2047
    • /
    • 2001
  • In this paper, a singularity problem of the state transition matrix is investigated in the spatial propagation when the spatial matrix differential equation is constructed via time finite element analysis. A parametric study shows that the degree of singularity of the state transition matrix depends on the degree of flexibility of the structures. As an alternative to avoid the numerical problems due to the singularity, an analytic solution fur spatial propagation of the flexible structures is proposed. In the proposed method, the spatial properties of the structure are analytically expressed by a combination of transcendental functions. The analytic solution serves fast and accurate results by eliminating the possibility of the error accumulation caused by the boundary condition. Several numerical examples are shown to validate the effectiveness of the proposed methods.

Identification of Structural Parameters from Frequency Response Functions (주파수 응답함수를 이용한 구조 파라메터 예측)

  • Kim, Kyu-Sik;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.863-869
    • /
    • 2007
  • An improved method based on a normal frequency response function (FRF) is proposed to identify structural parameters such as mass, stiffness and damping matrices directly from the FRFs of a linear mechanical system. The method for estimating structural parameters directly from the measured FRFs of a structure is presented. This paper demonstrates that the characteristic matrices are extracted more accurately by using a weighted equation and eliminating the matrix inverse operation. The method is verified for a four degree-of-freedom lumped parameter system and an eight degree-of-freedom finite element beam. Experimental verification is also performed for a free-free steel beam whose size and physical properties are the same as those of the finite element beam. The results show that the structural parameters, especially the damping matrix, can be estimated more accurately by the proposed method.

  • PDF

A primal-dual log barrier algorithm of interior point methods for linear programming (선형계획을 위한 내부점법의 원문제-쌍대문제 로그장벽법)

  • 정호원
    • Korean Management Science Review
    • /
    • v.11 no.3
    • /
    • pp.1-11
    • /
    • 1994
  • Recent advances in linear programming solution methodology have focused on interior point methods. This powerful new class of methods achieves significant reductions in computer time for large linear programs and solves problems significantly larger than previously possible. These methods can be examined from points of Fiacco and McCormick's barrier method, Lagrangian duality, Newton's method, and others. This study presents a primal-dual log barrier algorithm of interior point methods for linear programming. The primal-dual log barrier method is currently the most efficient and successful variant of interior point methods. This paper also addresses a Cholesky factorization method of symmetric positive definite matrices arising in interior point methods. A special structure of the matrices, called supernode, is exploited to use computational techniques such as direct addressing and loop-unrolling. Two dense matrix handling techniques are also presented to handle dense columns of the original matrix A. The two techniques may minimize storage requirement for factor matrix L and a smaller number of arithmetic operations in the matrix L computation.

  • PDF

NEW CONSTRUCTION OF THE EAGON-NORTHCOTT COMPLEX

  • Kang, Oh-Jin;Kim, Joohyung
    • Korean Journal of Mathematics
    • /
    • v.20 no.2
    • /
    • pp.161-176
    • /
    • 2012
  • The authors [6] introduced the concept of a complete matrix of grade $g$ > 3 to describe a structure theorem for complete intersections of grade $g$ > 3. We show that a complete matrix can be used to construct the Eagon-Northcott complex [7]. Moreover, we prove that it is the minimal free resolution $\mathbb{F}$ of a class of determinantal ideals of $n{\times}(n+2)$ matrices $X=(x_{ij})$ such that entries of each row of $X=(x_{ij})$ form a regular sequence and the second differential map of $\mathbb{F}$ is a matrix $f$ defined by the complete matrices of grade $n+2$.

Modified finite element-transfer matrix method for the static analysis of structures

  • Ozturk, D.;Bozdogan, K.;Nuhoglu, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.761-769
    • /
    • 2012
  • In this paper the Modified Finite Element-Transfer Matrix Method, which is the combination of Transfer Matrix Method and Finite Element Method, is applied to the static analysis of the structures. In the method, the structure is divided into substructures thus the number of unknowns that need to be worked out is reduced due to the transformation process. The static analysis of the structures can be performed easily and speedily by the proposed method. At the end of the study examples are presented for ensuring the agreement between the proposed method and classic Finite Element Method.

Computerization of Matrix Analysis of Skeletal Structures (행렬해법에 의한 골조구조해석의 전산화)

  • 이재영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.1
    • /
    • pp.87-95
    • /
    • 1980
  • General purpose programs are essential elements for the computerization of structural analysis. This paper is associated with actual formulation of such programs by matrix analysis. The basic theory of matrix analysis for skeletal structures, its implementation and techniques for developing efficient programs are discussed in this paper. Any shape of skeletal structure can be included in a single program for space frames. But in order to economize computing time and computer memory space, it is desirable to develop and operate seperate programs specialized into four categories; truss, planar frame, grid and space frame. As for general purpose programs, simplicity of input format and flexibility of output format should be duly considered. Compaction and solution of system equations are the most important aspects in computer programming of matrix analysis, and worth further study for more efficient computerization.

  • PDF

Dynamic Incidence Matrix Representation of Timed Petri Nets and Its Applications for Performance Analysis

  • Shon, J.G.;Hwang, C.S.;Baik, D.K.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.2
    • /
    • pp.128-147
    • /
    • 1991
  • We propose a dynamic incidence matrix (DIM) for reflecting states and time conditions of a timed Petri net (TPN) explicitly. Since a DIM consists of a conventional incidence matrix, two time-related vectors and two state-related vectors, we can get the advantages inherent in the conventional incidence matrix of describing a static structure of a system as well as another advantage of expressing time dependent state transitions. We introduce an algorithm providing the DIM with a state transition mechanism. Because the algorithm is, in fact, an algorithmic model for discrete event simulation of TPN models, we provide a theoretical basis of model transformation of a TPN model into a DEVS(Discrete Event system Specification) model. By executing the algorithm we can carry out performance analysis of computer communication protocols which are represented TPN models.

  • PDF

A Study on Dot-Matrix Display using Powder Electroluminescent Device with High Brightness (고휘도 후막 전계발광소자을 이용한 Dot-Matrix Display에 대한 연구)

  • Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1255-1257
    • /
    • 1998
  • In this study,$ 5{\times}5$ dot-matrix display was implemented with powder electroluminescent device (PELD). Generally PELD which have a luminance from powder phosphor with electric field, inserted phosphor and dielectric layer between electrodes is basic structure. To make high brightness PELD compared to conventional device, new type of PELD was proposed as follows. New PELD had only one layer, which was mixed phosphor (ZnS:Cu) and dielectric (BaTiO3) material appropriately between electrodes. To compare and estimate the conventional and new type of PELD, the EL spectrum, transferred charge density, brightness and decay time was measured. As above result, we fabricated a hish brightness $ 5{\times}5$ dot-matrix display with new type of PELD. Its brightness was 6400 $cd/m^2$ at 200 V, 400Hz.

  • PDF

Study of Signal Characteristics of Matrix Cracks in Composites Using Wavelet Transform (웨이블릿 변환을 이용한 복합재 모재균열의 신호특성 분석)

  • 방형준;김대현;강동훈;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.151-154
    • /
    • 2002
  • The objective of this study is to find the change of signal characteristics of matrix cracks due to the different specimen shapes. As the concept of the smart structure, monitoring of acoustic emission (AE) can be applied to inspect the fracture of the structures in operating condition using built-in sensors. To understand the characteristics of matrix crack signals, we performed tensile tests by changing the thickness and width of the specimens. This paper describes the implementation of time-frequency analysis such as wavelet transform (WT) fur the quantitative evaluation of fracture signals. The experimental result shows the distinctive signal features in frequency domain due to the different specimen shapes.

  • PDF