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Dynamic Incidence Matrix Representation of Timed Petri Nets
and Its Applications for Performance Analysis
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Abstract

We propose a dynamic incidence matrix(DIM) for reflecting states and time conditions of a
timed Petr1 net(TPN) explicitly.

Since a DIM consists of a conventional incidence matrix, two timerelated vectors and two
staterelated vectors, we can get the advantages mherent in the conventional incidence matrix
of describing a static structure of a system as well as another advantage of expressing time-
dependent state transitions.

We introduce an algorithm providing the DIM with a state transition mechanism. Because the
algorithm 1s, in fact, an algorithmic model for discrete event simulation of TPN models, we
provide a theoretical basis of model transformation of a TPN model into a DEVS(Discrete
EVent system Specification) model.

By executing the algorithm we cém carry out perfomance analysis of computer

communication protocols which are represented TPN models.

1. Introduction

The Petri net was developed as a tool for system modeling in 1962 by C.A. Petri[1].
Since then, many modifications and extensions have been studied in order to increase the
modeling and analyzing power of Petri nets. Among these efforts, a timed Petri net(TPN)
15 useful to describe time conditions, such as time delays, which are necessary for
performance evaluation and scheduling problems of dynamic systems[5].

There are two major approaches used for analyzing systems modeled by Petri nets to prove
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some properties including liveness, safeness, and boundedness: one is based on the reachability
tree, and the other on matrix representation[ 2 ].

In the matrix-based approach, a Petri net is defined by the incidence matrix which is a
composite matrix of a forward incidence matrix and a backward incidence matrix representing
the input and output functions, respectively. Although this matrix representation promises to
facilitate analysis of Petri net models, it has some serious problems[2], [4]. One of them is a
limitation in that it can express only static structure of Petri nets and not state or time, which
are essential parts of a time-dependent system modeling tool, such as a TPN.

In this paper, we propose the dynamic inciderice matrix(DIM) for TPNs to incorporate the
state and time component into the ordinary incidence matrix. By this DIM, a TPN can be
allowed to describe states and time conditions expiicitly.

In order to provide the DIM with state transition mechanism, we present an algorithm based
on the DIM for finding the next state together with time-dependent information about the state
transition. Since this algorithm is also used for the discrete event simulation of TPN models, we
provide a theoretical basis by which a TPN mode! can be transformed into a DEVS model. And
we show the dynamic expressibility of a DIM representation by applying the DIM scheme to

performance analysis of two well-known communication protocols.

2. Classification and Limitations

Many various definitions of Petri nets have been developed by different researchers in
different ways. Among those definitions the following definition is often used to explain the

structure of Petri nets[6].
Definition 1

A Petri net is a quadruple C=<P, T, F, B>
where

P 1s a set of places, P+ ¢

T is a set of transitions, T ¢, PNT= ¢

F : PxT-N is the forward incidence function

(N 1s the set of nonnegative integers.)

B : PxT—N 1s the backward incidence funciion

Representation . A Petri net is described as a cigraph, in which the nodes are the places and
transitions represented by circles and bars, respectively. There s a directed arc from place p, to

transition t, iff F(p, t)= d;, * 0, where d, is called the weight of the arc. There is also a
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directed arc from transition t, to place p, iff B(p,, t,) = d\, * 0, where d,, is called the weight of
the arc.

Marking . A marking M of a Petri net is a function M : PN such that M(p;) is the number
of tokens in pEP. A token is represented by a black dot within a circle. A Petri net with an
initial marking M 1s called an marked Petri net and denoted as C=<P, T, F, B, M,>.

Input place set : 1(t)={p.€P | F(p, t,)*0} for each t,ET.

Qutput place set:O(t) ={p <P | B(p,, t;)*0} for each tET.

Enabled transitiont; €T is enabled under a given marking M iff M(p,) >F(p;, t;)

for each p.€P.

Next marking M after firing of t,: When M is a current marking and t, is enabled under M,
the next marking M’ can be found by M’(p,) =M(p)) —F(p, t,)+B(p, t) for each p,€P. In this

case, M’ is said to be reachable from M by t,.

2.1 Classification of Timed Petri Nets

Although a Petri net itself allows the modeling of concurrency, nondeterminism, and
communication, it has been used to represent only the logic behavior of systems, with no timing
or performance considerations. To make it easier to analyze the performance characteristics of
such systems, several modifications of Petri nets have been needed so that time could be
represented in Petri net models. Those various efforts have been reported in many literatures,
and we intend to classify them here. We will use the term ‘timed Petri net(TPN)' with the
generic meaning of ‘Petri net with some deterministic/stochastic timing.’

TPNs can be separated into t-timed Petri nets(t TPNs)[7], [8], [9] and p-timed Petri nets(p-
TPN)[10] depending on whether time is assigned to each transition or each place. t-TPNs in
turn can be divided into deterministic TPNs(DTPNs; this category is called simply TPNs in
many literatures[ 7], [11]) and stochastic TPNs(STPNs) according as time assigned is a fixed
value(or interval) or a random variable, respectively.

Again we can classify STPNs into continuoustime, discrete-time, and general-time STPNs
according to the kind of distribution of the random variable: exponential, geometric, and
general, respectively. While the SPN(stochastic Peri net)[12] and the GSPN(generalized SPNs)
[13] are included in continuous-time STPNs, the DSPN(discrete-time SPN)[14] in discrete-time
STPNs. Finally, the ESPN(extended SPN)[157] and the GTPN( generalized TPN)[16] are in the
general-time STPN category. We summarize this in Fig.1.

In this paper, we define a TPN in somewhat generic sense as follows; that is, the waiting

time may be assumed to be (enable time) + (firing time).
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Definition 2

A timed Petri net 1s a six-tuple C=<P, T, F, B, M,, r>, where r . T—R, 1s a function from T

into the nonnegative reals R, such that 7(t,) is the waiting time of a transition t,&T.

TPN

t-TPN

DTPN

STPN

p-TPN

|

STPN

continuous-time

discrete-time

STPN

SPN

GSPN

DSPN

general-time

STPN

ESPN

GTPN

<Fig.1> Classification: of Timed Petri Nets

2.2 Limitations of The Incidence Matrix
As an alternative definition of a Petri net, C= <P, T, D7, D" > may be used, where D™ =

[d7;] is called the forward incidence matrix with d-,=F(p, t,) and D*=[d*,] is called the

backward incidence matrix with d*,=B(p, t,). Because of some reasons described in [2] and
the need for more memory space for matrices D™ and D7, the definition C= <P, T, D> may be
preferrable to the definition C=<P, T, D, D™ >

In definition C= <P, T, D>, matrix D=[d, ] is called the incidence matrix such that D =
D*—D"and d,= d*,—d~,;, =B(p, t)—F(p, t.).
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Although the incidence matrix is a well-arranged representation of a Petri net for analyzing
behavioral and/or structural properties[ 3], it has certain limitations:

(1) It does not reflect self-loops[ 2], [4].

(2) It does not provide information about the order of transition firings[2].

(3) It is not sufficient for the reachability problem[2].

(4) Tt does not have complete representiveness| 4].

(5) It can reflect neither the time element nor the marking element of the timed Petri net.

To eliminate limitation (5), we present another matrix representation for reflecting both time

and marking in the following chapter.

3. Dynamic Incidence Matrix of A Timed Petri Net

A model is said to have dynamic expressibility when it can express a system by the
mechanisms of

(1) state transitions which occur by change over time, and

(2) snapshot representation of a state at any time.

That is, if a model has dynamic expressibility, then the model can show when the current
state is transferred, what the next state is, how long a system has been in the current state, and
how long a system must remain in the current state. According to this view, a TPN model does
not have dynamic expressibility because it cannot satisfy either of the two conditions.

In order to endow TPN models with dynamic expressibility, we will introduce the extended
state transition function and the total state set of a TPN model after defining some terms for
TPN C=<P, T, F, B, M,, > as follows| 18]:

reachability set R(M,) : The set of all markings reachable from M, is called the reachability set
of C and is denoted by R(M,).

enable set E(M) under M :-For each marking MER(M,), the set of all enabled transitions
under M is called the enable set under M and is denoted by E(M).

extended time fuction r, . The extended time function 7, of a TPN is defined as z. ; R(M;)—R,
such that, for each MER(M,), 7,(M) =min{zr(t,) | t,€E(M)}, where R, is the set of nonnegative

reals.

3. 1 Dynamic Expressibility in a Global View

Since the state of a TPN model is represented by a marking, a state M can be transferred to
the next state M’ after firing of an enabled transition, say t, of which the waiting time value
z(t,) is minimum among the t’s in E(M). That is, there exists a state transition function 8 ; R
(My)—R(M,) such that, for each MER(M,), §(M) is the next state under M after a transition
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t; with z(t,)=r,(M) fires. This state transition function ¢ satisfies conditon(l) of dynamic
expressibility.
The other condition will be satisfied by considering the total state set of a TPN model.
Definiton 3
Givena TPN C=<P, T, F, BM,, r>>, the total state set of C is the set Q defined as follows:
Q={(M, e) | MER(M,), e€R,, O<e<r, (M)}

The pair (M, e) represents a sequential state M together with the elapse time e during which
the system has been in that state M. As an alternative to Q for the total state set, we present Q’
as follows:

Q={(M, r) | MER(M,), rER,, O<r<r,(M}},
where r=7,(M) — (current time). The pair (M, r) represents a sequential state M along with the
remain time r during which the system will remain in that state M. So the pair(M, e) or (M, r)
is called a snapshot state.

If time, is the current model time, then the system comes into the current state M at time.—e

= time.+r—r(M), and state M will be tarnsferred at time.+r,(M) —e = time,+r (Fig.2).

current time
time.—e time, time.+r

| | | » time
[ [ |

| . e [ r |

[« > >

le |

"

(M)

<Fig. 2> Elapse time e and remaining time r under the current state M

The pair (M, e) (or (M, r)) is considered a snapshot representation of a system at the
current time. Hence the total state set Q (or Q") includes all possible snapshots so as to satisfy
the condition(2) of dynamic expressibility.

From definition 3, our state trasition function ¢ can be extended to be defined on the total
state set Q.

Definition 4

Givena TPN C=<P, T, F, B, M,, r> with the total state set Q, the state transition function §

of C 1s defined as

8 . Q—Q such that §(M, e)=(M’, 0) when e= r.(M).
For Q’, § is similarly defined as

8 : Q@—Q’ such that §(M, r)=(M’, 7,(M")) when r=0.
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Consequently, a TPN model C has dynamic expressibility if C adopts the state transition
function & (in Definmition 4) and the total state set Q(in Definition 3).

3.2 Dynamic Expressibility in An Individual View

In a similar manner as described above, we can define elapse time function & and remaining
time function ¢ for each transition t, € T, individually.
Definition 5

Given a TPN C=<P, T, F, B, My, >, elapse time function € of C is defined as ¢ : T— R,
such that, for each t,€T, &(t) is the elapse time from the time at which t; has begun to be
enabled to the current time.

And the remaining time function ¢ of C is defined as ¢ . T—R, such that, for each t,€T, a(t,)

is the remaining time from the current time to the time at which t, will fire.

From this definition, each transition can be expressed individually by elapse time function ¢ or
remaining time function ¢. Therefore each transition may have dynamic expressibility In

individual sense. If the number of set T, denoted by o(T), is n, then elapse time function € may

be represented by a n-vector E=(e(t)), (t,), -, €(t,)) called the elapse time vector, and
remaining time function ¢ by a nvector F={(o(t,), o(t;), ---, 6(t,)) called the remaining time
vector,

Given a TPN model C=<P, T, F, B, My, r> with the total state set Q and the current state
MeR(M,), the following properties are satisfied:

(1) If the current snapshot state (M, e)€Q,

then e = ¢(t;) for all t,eE(M), and

(2) If the current snapshot state (M, r) €Q’,

then r = min{a(t;) | tEE(M)}.

These properties mean that a snapshot state of a system can be represented partly by
function ¢ or ¢; that is, dynamic expressibility in global sense can be achieved by dynamic
expressibility in an individual sense If a state transition function is assumed.

However, we need a new representation of a TPN model which can reflect dynamic
expressibility individually (and then globally), because no conventional representations of a
TPN model have dynamic expressibility. A new representation ought to reflect the following:

(1) a state transition mechanism as described in Definition 4,

(2) a snapshot state by a certain mechanism, say function € or ¢ in Definition 5, as well as

(3) static structure including P, T, F, O, M,, and .
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3.3 Definition of The Dynamic Incidence Matrix

We define the dynamic incidence matrix(DIM} of a TPN model so as to represent and
analyze TPN models dynamically; the DIM shows us static structure as well as a snapshot state
of a TPN model because the matrix includes function ¢ described in Definition 5. In addition to
the DIM, we present Find_Next_State algorithm in section 4.3 as the state transition mechanism
described in Definition 4.

A timed Petri net C=<P, T, F, B, M,, 7> with a conventional incidence matrix D=[d,] is
denoted by C=<P, T, D, M, t>.
Definition 6

Let C=<P, T, D, M,, > be a timed Petri net with initial marking My. When o(P)=m—2
and o(T)=n-—2, the dynamic incidence matrix A=[a;] of C is defined as an m xn matrix whose

typical element

dij (1<1<m—-2,1<)<n-2)

z(t) (i=m-1, 1 €£)<n-2)
a=  o(t) (i=m 1<j<n-2)

Mu(p) (1<i<m-2 j=n-—-1)

M(p)) 1<i1<m-2 j=n)

not defined (i=m—1, m, and j=n—1, n).

We name four vectors and one matrix related in Definition 6 as follows:

waiting time vector W : the row vector W=1{(a, 1 1, @m-1.2 % Am—1.n-2) = (z(t1), (L), -+,
7(t,_2)) 1s called the waiting time vector.

remaining time vector F . the row vector F=(a,, 1, any, ) 8m.a-2) =(0(t1), 0(t2), ==, 0(t,2)) IS
called the remaining time vector.

initial state vector Sy : the column vecor Sy=(a, -1, @z.n-1, *** Am-z.a-1) = (Mo(p1), Mo(p2), -+,
My(pm-2)) 1s called the mital state vector.

current state vector S . the column vector S=(a, ,, a1, =, an-2.0) = (M(p)), M(p2), -,
M(pn-2)) 18 called the current state vector.

static incidence matriz(SIM) B : the (m—1) x (n--1) submatrix B=[b,] of the DIM A, whose
typical element B,=a,(i%m, j*n), is called the static incidence matrix of TPN model C.

A DIM representation of a TPN model consists of the incidence matrix and the above vectors,
and an outline of a DIM is depicted in Fig.3.

A simple protocol is modeled by the TPN model in Fig.4 where time conditions of each
transitions are assumed as follows: 7(t,) =20, r(t,) =100, 7(t;) =15, r(t,) =30, r(ts) =100, r(ts)
=35, r(t;) =200, 7(t;) =100, and r(ts) =100. The following Fig.5 illustrates the DIM of the TPN
model in Fig.4 when the model is at initial state M==M,.
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<Fig.3> Outline of a dynamic incidénce matrix(DIM)

Pl t‘l P2 P5
(O
t, '
Ly
t
b —— P, P, W——
to
ts
Pg t’5 PG P4

<Fig.4> A TPN model of a simple protocol
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t t; ts t ts ts 1% ts tg . Mo(p:) ' M(p)
p o~ —1 0 0 0 0 1 1 0 0 1 1 7
p: 1 -1 0 0 0 0 0 -1 0 0 5 0
Ps 0 1 -1 0 0 0 0 0 0 0 0
P 0 0 1 -1 0 0 0 0 0 0 0
Ds 0 -1 0 1 0 0 0 0 0 1 1
Ds 0 0 1 0 -1 0 0 0 -1 0 0
P 1 0 0 0 -1 0 -1 0 0 0 0
Ds 0 0 0 0 1 -1 0 0 0 0 0
Py 0 0 0 0 1 -1 0 0 0 0 0
7(t) 20 100 15 30 100 35 200 100 100 : — . -
a(t) L 20 100 15 30 100 35 200 100 100 = - -

<Fig.5> The DIM of the TPN model at initial state M=M, in Fig.4

4. Simulation of TPN Models-with The DIM

The DEVS(Discrete EVent system Specification) is a formalism introduced by Zeigler[17] in
order to provide a formal basis for specifying the models within discrete event simulation
languages such as SIMSCRIPT, SIMULA, and GPSS.

A DEVS is a 6-tuple structure

M=<X,Y,S, 8 4 t.>

where

X is a set of external input events,

Y is a set of output events,

S 1s a set of sequential states,

¢ is a function, called the state transition function,

A 1s a function, called the output function, and

t, i1s a function, called the time advance function
with the following constraints:

(1) t, is a mapping from S into R, the non-negative reals with infinity:

t..S = Ry
(2) The total state set of the system specified by M 1s
Q={(s,e) | s€S,0 < e < 1,(s)}
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(3) The transition function ¢ consists of two parts:
a) The internal transition function 8., . Q@ — Q
b) The external transition function 8., : QXX - Q

4.1 Model Transformation

In order to transform a marked TPN model into a DEVS simulation oriented model, we need
to have some preparation: extended time function z, (in section 3.1) and definitions of a closed
TPN and an open TPN.

We define a closed TPN as a TPN without external input/output places, and an open TPN as
a TPN with external input/output places.

Theorem A marked TPN model can be represented by a DEVS model[ 18].

Proof: The basis of the proof is to show that a marked TPN model, say C, is defined with the
DEVS structure, <X, Y, S, 6, A, T.>.

Since a state in C is represented by a marking, the reachability set R(M,) plays the role of a
sequential state set S under DEVS formalism. While a state transition can occur when an event
arrives in a DEVS model, a state(marking) can be transferred to the next state(marking) when
the enable transition with a minimum value of z, fires in a TPN model.

Hence we consider a set G={(M, ) | MER(M,), 0< e <7,(M)} as the total state set Q in
DEVS formalism. In a TPN model, a state MER(M,) is transferred to the next state M’ after
firing of the transition with a minimum r,. Formalizing this, we get the following: thete exists a
state transition function &y, such that 8, : G > G by 8.(M, e)=(M’, 0) when e= r.(M). And
this 8., plays the part of the internal state transition function &;, in the DEVS framework.

Now we divide this proof into two cases according to whether a TPN model is of closed form
or open form.

1) in case of a closed TPN model C

Since C does not communicate with the outside world, there is no necessity to include X, Y,
and A as components of the model structure, hence X = Y = ¢ and A = ¢ (meaning that A
need not be defined). Because X =4, the external transition function J.,, is no longer needed, so
that d...=¢. Therefore a closed TPN C is represented by the DEVS M, = < ¢, ¢, R(M,), 6.y &,
T

2) in case of an open TPN model C

Since C does communicate with the outside world, X, Y, and A should be defined. X is the set
of those elements which represent the deposit of one or more tokens in the input place(s) of C.
Y is the set of those elements which represent a property expressed by tokens in the output
place(s) of C. A is a function of R(M,) into Y. Those three components of the DEVS model
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structure may not be specifically defined, but in a specific application they would be specified by
a modeler. 4., is a function of @ x X into Q defined as 8..(M, e, x)=(M’, 0) in which an
external event x, meaning that a token is to be deposited in an input place of C, causes M to be
the next state M” when e < 7,(M). Hence an open TPN C is represented by the DEVS M, =
<X, Y, R(My), 6, 4 7, >. Q.E.D.

4.2 An Algorithm for Finding The Next State

In this section we present an algorithm model(}ig.6) for finding the next state of a TPN
model C=<P, T, F, B, M,, 7> under current state M. This algorithm is based on DIM A of
TPN model C.

For a DEVS based simulation, we include in the algorithm a step 3.1 which can be extended

as follows:

3.1.1 Set time,:= time,
3.1.2 Set time,. = time,+a,
where, time, and time, stand for the time of the last firing and the current time, respectively.
After the resulting state vector S’ is updated, we can find the next state iteratively. By this
algorithm, we can tell what the next state is as well as when it will be transferred. As seen, the
DIM representation of a TPN model is simple and easy to understand, especially for modelers
who are familiar with the incidence matrix of a Petri net[ 18].
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Algorithm Find_Next_State
Input: DIM A of TPN model C with m—2 places and n—2 transitions
Output: changed state vector S’ of A
1. Find the enable set E under the current state S
1.1 Find a set K={i | a,>0, 1<i<m—2}
1.2 For each1 € K, find a set
L = {j]lai<0,a, > —a, 1<j<n—2)
1.3 For each j& L, find a set
Li=1{kla; <0,k *1i1<k<m-2)
1.4 Decide whether t; is enabled or not:
if Li=¢
thenput t,in E
else
foreach k € L,
if a2 —ay
then put t;in E
endif
endfor
endif
2. Find the immediate transition t, out of E
2.1Find asetI={k | an = min{a, | t, € E}}
2.2 If the set I has only one element
then t, is the immediate transition
else
call a tie-breaking procedure
endif
3. Find the next state vecotr S’
3.1 Set current time advanced as a,, unit
3.2 For each i(1<1<m-—2)
&in. = a, + ay
4. End Find_Next_State

<Fig.6> Algorithmic Model
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5. Applications : Performance Analysis

5.1 Performance Analysis of A Simple Protocol

The simple protocol in Fig.4 is sutdied to analyze some performance measures by executing
its TPN model. The TPN model reflects (1) message loss, (2) retransmission, (3) timeout. The
transition t; expresses message loss and t; acknowledgement loss. t; plays the role of
retransmission when timeout occurs.

We collect the simulated data during the execution of the TPN model represented by the DIM.
When the channel has failure rate x % of the message loss, we evaluate performance measures
including mean successful throughput and mean response time.

For the sake of simplicity in performance analysis, we assume that all processed (transmitted,
lost, retransmitted, or created) data have the same length, say one message, or one packet.
When the simulation time 1s ty., we specify performance measures as follows:

(1) mean throughput(T,):

To=W/tin = Nutum / tsm = Nn(message/sec)
where W is the total amount of successful data during te, and N, Is the mean number of
successful transmissions.

About the TPN moldel of the simple protocol, we can calculate T, as the total firing number
of te(creating a new message after receiving the ACK message) during t,, divided by t,. The

relation between the mean throughput and channel failure rate is depicted in Fig.7

Simple Protocol
Throughput
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0.2
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1 5 10 15 20 25 30 35 40 45 50
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<Fig.7> Mean throughput of the simple protocol in Fig.4
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(2) mean response time(R,,)}:
R, is defined as the mean duration time between a sending state (M=(1,5)) and a receiving

state (M=(5,8)). We can evaluate R,, from the following formula:

Ro=( X r)/n
where each r, is the i-th actual response time, and n is the number of responses during ty,. F 12.8
illustrates the relation between the mean response time and the channel failure rate.

Simple Protocol
Response Time
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0.3
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1 5 10 15 20 25 30 35 40 45 50
Channel follure rote(%)

<Fig.8> Mean response time of the simple protocol in Fig.4

5.2 Performance Analysis of The Alternating Bit Protocol

The timed Petri net Fig.9 represents the alternating bit protocol. This protocol Involves two
parties, a sender and a receriver, connected through a link. The sender sends messages to the
recelver, and the receiver responses with acknowledgements. Each message carries a control bit
(0 or 1) whose value alternates for consecutive messages, and each acknowledgement carries a
bit equal to the one carried by the message it acknowledges. This TPN is similar to the two
instances of the TPN shown in Fig.4. The differences are t,; and t representing the event of
recelving messages out of order.

About this alternating protocol, we can calculate T, similarly as in the pervious section. T, Is
described as the total firing number of t, and t, {creating a new message whatever the value of
its control bit) during t,, divided by t,.. The relation between the mean throughput and the
channel failure rate is depicted in Fig.11.

We can also define mean response time R, as the mean of two duration times one is between
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a sending state M=(1,3) and a receiving state M=(6,8) and the other is between a sending
state M=(6,9) and a receiving state M=(3,14). Fig.12 illustrates the relation between the

mean response time and the channe] failure rate.

t,

Py

tio y

<Fig.9> A TPN model of the alternating bit protocol
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when the model is at certain intermediate state M
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<Fig.12> Mean response time of the alternating bit protocol

6. Conclusions

In this paper, we propose the dynamic incidence matrix(DIM) for TPN models to describe
explicitly states and time conditions which are not expressed by the conventional incidence
matrix. The DIM has dynamic expressibility since this matrix representation has remaining time
function ¢ and Find_Next_State algorithm as mechanisms for snapshot states and state
transitions, respectively.

While the SIM(static incidence matrix) part of a DIM can express the static properties of a
TPN, the other part, which consists of the current state vector S and the remaining time vector
F, can express the dynamic properties of a TPN model. Thus it is possible to express the
snapshot state of a system at any time, and describe not only what the next state is but also
when the next state is transferred.

According to the theoretical basis of model transformation”of a TPN model into a DEVS
moldel, Find_Next_State algorithm is also used for discrete event simulation of TPN models. By
simulating TPN models, we carry out performance analysis of a simple protocol and the

alternating bit protocol especially about mean throughput and mean response time.
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