• 제목/요약/키워드: Matrix Geometric Method

검색결과 170건 처리시간 0.029초

A TOPOLOGICAL PROOF OF THE PERRON-FROBENIUS THEOREM

  • Ghoe, Geon H.
    • 대한수학회논문집
    • /
    • 제9권3호
    • /
    • pp.565-570
    • /
    • 1994
  • In this article we prove a version of the Perron-Frobenius Theorem in linear algebra using the Brouwer's Fixed Point Theorem in topology. We will mostly concentrate on he qualitative aspect of the Perron-Frobenius Theorem rather than quantitative formulas, which would be enough for theoretical investigations in ergodic theory. By the nature of the method of the proof, we do not expect to obtain a numerical estimate. But we may regard it worthwhile to see why a certain type of result should be true from a topological and geometrical viewpoint. However, a geometric argument alone would give us a sharp numerical bounds on the size of the eigenvalue as shown in Section 2. Eigenvectors of a matrix A will be fixed points of a certain mapping defined in terms of A. We shall modify an existing proof of Frobenius Theorem and that will do the trick for Perron-Frobenius Theorem.

  • PDF

보강된 구조물의 기하학적 비선형 해석을 위한 편심 응축 셸 요소 (An Eccentric Degenerated Shell Element for the Geometrically Nonlinear Analysis of Stiffened Structures)

  • 이원재;이병채
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1721-1730
    • /
    • 2000
  • An eccentric degenerated shell element with geometric non-linearity for the precise and efficient analysis of stiffened shell structures is developed. To deal with the eccentricity, we define the e ccentric shell and the master shell that constitute one combined shell. It is assumed that the sections remain plane after deformation. The internal force vector and the tangent stiffness matrix based on the virtual work principle in the natural coordinate system are derived. To enhance the robustness of the element, assumed strain method for transverse shear and membrane strains is used. Through numerical experiments the effectiveness of the proposed element is demonstrated.

Phase-type 수리시간을 갖는 무기체계의 적정예비품수 결정 (The Optimal Spare Level of a Weapon System having Phase-type Repair Time)

  • 윤혁;이상진
    • 경영과학
    • /
    • 제26권3호
    • /
    • pp.145-156
    • /
    • 2009
  • The probability distribution of the repair process should be determined to choose the optimal spare level of a weapon system with a queueing model. Though most weapon systems have a multi-step repair process, previous studies use the exponential distribution for the multi-step repair process. But the PH distribution is more appropriate for this case. We utilize the PH distribution on a queueing model and solve it with MGM(Matrix Geometric Method). We derive the optimal spare level using the PH distribution and show the difference of results between the PH and exponential distribution.

A Study on the Impedance Calculation by using Equivalent Model in Catenary System

  • Kim, Min-Kyu;Kim, Min-Seok;Kim, Dae-Hwan;Lee, Jong-Woo
    • International Journal of Railway
    • /
    • 제3권2호
    • /
    • pp.46-53
    • /
    • 2010
  • Electric railroad systems consist of rolling stock, track, signal and catenary system. In the catenary system, one of the most important factors is the impedance according to the design and characteristic. Before the catenary system is designed, the impedance should be precedently researched. The railroad catenary system is complex system which is composed by five conductors. The five conductors classify up and down feeders, up and down contact wire group, rail group. Therefore, we should compose the catenary system of the equivalent five-conductors model. In this paper, we suggest a geometrical model and a equivalent conductor model by using geometric mean radius of five conductors in the catenary system. Also, we calculate demanded parameter values in the model. By using those, line constants of five conductors are analyzed by applying the equivalent method called as the condensed joint matrix.

  • PDF

A Novel Spectrum Allocation Strategy with Channel Bonding and Channel Reservation

  • Jin, Shunfu;Yao, Xinghua;Ma, Zhanyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.4034-4053
    • /
    • 2015
  • In order to meet various requirements for transmission quality of both primary users (PUs) and secondary users (SUs) in cognitive radio networks, we introduce a channel bonding mechanism for PUs and a channel reservation mechanism for SUs, then we propose a novel spectrum allocation strategy. Taking into account the mistake detection and false alarm due to imperfect channel sensing, we establish a three-dimensional Markov chain to model the stochastic process of the proposed strategy. Using the method of matrix geometric solution, we derive the performance measures in terms of interference rate of PU packets, average delay and throughput of SU packets. Moreover, we investigate the influence of the number of the reserved (resp. licensed) channels on the system performance with numerical experiments. Finally, to optimize the proposed strategy socially, we provide a charging policy for SU packets.

A new constitutive model to predict effective elastic properties of plain weave fabric composites

  • Mazaheri, Amir H.;Taheri-behrooz, Fathollah
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.651-659
    • /
    • 2021
  • In this study, a new constitutive model has been developed to predict the elastic behavior of plain weave textile composites, using the finite element (FE) method. The geometric conditions and basic assumptions of this model are based on the basics of a continuum theory developed for the plane curved composites. In this model, the mechanical properties of the weave region and pure matrix region is calculated separately and then imported for the FE analysis. This new constitutive model is used to implement the mechanical properties of weave region in the representative volume element (RVE). The constitutive relations are implemented as user-material subroutine code (UMAT) in ABAQUS® FE software. The results of FE analysis have been compared with experimental results and other data available in the literature. These comparisons confirmed the capability of the presented model for the prediction of effective elastic properties of plain weave fabric composites.

Nonlinear free vibration analysis of a composite beam reinforced by carbon nanotubes

  • M., Alimoradzadeh;S.D., Akbas
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.335-344
    • /
    • 2023
  • This investigation presents nonlinear free vibration of a carbon nanotube reinforced composite beam based on the Von Kármán nonlinearity and the Euler-Bernoulli beam theory The material properties of the structure is considered as made of a polymeric matrix by reinforced carbon nanotubes according to different material distributions. The governing equations of the nonlinear vibration problem is delivered by using Hamilton's principle and the Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The nonlinear natural frequency and the nonlinear free response of the system is obtained with the effect of different patterns of reinforcement.

Analysis of cable structures through energy minimization

  • Toklu, Yusuf Cengiz;Bekdas, Gebrail;Temur, Rasim
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.749-758
    • /
    • 2017
  • In structural mechanics, traditional analyses methods usually employ matrix operations for obtaining displacement and internal forces of the structure under the external effects, such as distributed loads, earthquake or wind excitations, and temperature changing inter alia. These matrices are derived from the well-known principle of mechanics called minimum potential energy. According to this principle, a system can be in the equilibrium state only in case when the total potential energy of system is minimum. A close examination of the expression of the well-known equilibrium condition for linear problems, $P=K{\Delta}$, where P is the load vector, K is the stiffness matrix and ${\Delta}$ is the displacement vector, it is seen that, basically this principle searches the displacement set (or deformed shape) for a system that minimizes the total potential energy of it. Instead of using mathematical operations used in the conventional methods, with a different formulation, meta-heuristic algorithms can also be used for solving this minimization problem by defining total potential energy as objective function and displacements as design variables. Based on this idea the technique called Total Potential Optimization using Meta-heuristic Algorithms (TPO/MA) is proposed. The method has been successfully applied for linear and non-linear analyses of trusses and truss-like structures, and the results have shown that the approach is much more successful than conventional methods, especially for analyses of non-linear systems. In this study, the application of TPO/MA, with Harmony Search as the selected meta-heuristic algorithm, to cables net system is presented. The results have shown that the method is robust, powerful and accurate.

보존력(保存力) 및 비보존력(非保存力)을 받는 평면(平面)뼈대 구조물(構造物)의 기하적(幾何的) 비선형(非線形) 해석(解析) (Geometric Non-linear Analysis of Plane Frame Structures subjected to Conservative and Non-conservative Forces)

  • 김문영;장승필
    • 대한토목학회논문집
    • /
    • 제10권1호
    • /
    • pp.17-26
    • /
    • 1990
  • 보존력(保存力) 및 비보존력(非保存力)을 받는 평면(平面) 뼈대 구조물(構造物)의 기하적(幾何的) 비선형(非線形) 거동(擧動)을 파악하기 위하여 기존의 하중증분법(荷重增分法)과 변위증분법(變位增分法)을 효율적으로 결합시킨 기하적(幾何的)인 비선형(非線形) 유한요소법(有限要素法)을 제시한다. 본(本) 논문(論文)에서 제안한 알고리즘은 보존력(保存力)뿐만 아니라 비보존력(非保存力)을 받는 경우에도 평면(平面) 뼈대의 Snap-Through, Turning-Back과 같은 강한 비선형(非線形) 거동(擧動)을 추적할 수 있다. 여러가지 예제(例題)들을 통하여 다른 문헌(文獻)들의 결과(結果)와 본(本) 연구(硏究)에 의한 결과(結果)를 비교 분석하므로써 제시된 이론(理論)의 정당성(正當性)을 입증(立證)한다.

  • PDF

Synergistic bond properties of new steel fibers with rounded-end from carbon nanotubes reinforced ultra-high performance concrete matrix

  • Nguyen Dinh Trung;Dinh Tran Ngoc Huy;Dmitry Olegovich Bokov;Maria Jade Catalan Opulencia;Fahad Alsaikhan;Irfan Ahmad;Guljakhan Karlibaeva
    • Advances in nano research
    • /
    • 제14권4호
    • /
    • pp.363-373
    • /
    • 2023
  • A novel type of steel fiber with a rounded-end shape is presented to improve the bonding behavior of fibers with Carbon Nanotubes (CNT)-reinforced Ultra-High Performance Concrete (UHPC) matrix. For this purpose, by performing a parametric study and using the nonlinear finite element method, the impact of geometric characteristics of the fiber end on its bonding behavior with UHPC has been studied. The cohesive zone model investigates the interface between the fibers and the cement matrix. The mechanical properties of the cohesive zone model are determined by calibrating the finite element results and the experimental fiber pull-out test. Also, the results are evaluated with the straight steel fibers outcomes. Using the novel presented fibers, the bond strength has significantly improved compared to the straight steel fibers. The new proposed fibers increase bond strength by 1.1 times for the same diameter of fibers. By creating fillet at the contact area between the rounded end and the fiber, bond strength is significantly improved, the maximum fiber capacity is reachable, and the pull-out occurs in the form of fracture and tearing of the fibers, which is the most desirable bonding mode for fibers. This also improves the energy absorbed by the fibers and is 4.4 times more than the corresponding straight fibers.