• 제목/요약/키워드: Matrix Filtering

검색결과 199건 처리시간 0.022초

A Robust Bayesian Probabilistic Matrix Factorization Model for Collaborative Filtering Recommender Systems Based on User Anomaly Rating Behavior Detection

  • Yu, Hongtao;Sun, Lijun;Zhang, Fuzhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권9호
    • /
    • pp.4684-4705
    • /
    • 2019
  • Collaborative filtering recommender systems are vulnerable to shilling attacks in which malicious users may inject biased profiles to promote or demote a particular item being recommended. To tackle this problem, many robust collaborative recommendation methods have been presented. Unfortunately, the robustness of most methods is improved at the expense of prediction accuracy. In this paper, we construct a robust Bayesian probabilistic matrix factorization model for collaborative filtering recommender systems by incorporating the detection of user anomaly rating behaviors. We first detect the anomaly rating behaviors of users by the modified K-means algorithm and target item identification method to generate an indicator matrix of attack users. Then we incorporate the indicator matrix of attack users to construct a robust Bayesian probabilistic matrix factorization model and based on which a robust collaborative recommendation algorithm is devised. The experimental results on the MovieLens and Netflix datasets show that our model can significantly improve the robustness and recommendation accuracy compared with three baseline methods.

비부정 행렬 인수분해 차원 감소를 이용한 최근 인접 협력적 여과 (Nearest-Neighbor Collaborative Filtering Using Dimensionality Reduction by Non-negative Matrix Factorization)

  • 고수정
    • 정보처리학회논문지B
    • /
    • 제13B권6호
    • /
    • pp.625-632
    • /
    • 2006
  • 협력적 여과는 사용자 선호도를 예측하기 위해 그 사용자의 유형을 학습하는 데 목적을 둔 기술이다. 협력적 여과 시스템이 전자상거래에서 성공적인 기술일지라도 그들은 데이터의 고차원성과 희박성이라는 문제점을 갖는다. 본 논문에서는 이와 같은 문제점을 해결하기 위하여 비부정 행렬 인수분해(NNMF, Non-negative Matrix Factorization) 방법을 이용한 최근 인접 협력적 여과 방법을 제안한다. 행렬을 분해하기 위한 전처리로서 사용자 변동 계수를 이용하여 사용자-아이템 행렬의 결측치를 채우고, 이를 대상으로 비부정 분해 방식을 적용하여 행렬을 인수분해 한다. 비부정 분해 방식을 적용한 긍정 분해는 사용자들을 의미를 갖는 벡터로써 표현함으로써 사용자들을 의미 관계를 갖는 그룹으로 표현한다. 이와 같이 벡터로 표현된 사용자들은 벡터 유사도에 의해 그들간의 유사도를 계산한다. 계산된 유사도의 정도에 의해 이웃을 결정하고, 이웃들이 평가한 아이템에 대한 흥미도를 기반으로 새로운 사용자가 평가하지 않은 아이템에 대한 결측치를 예측한다.

Polyphase Representation of the Relationships Among Fullband, Subband, and Block Adaptive Filters

  • Tsai, Chimin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1435-1438
    • /
    • 2005
  • In hands-free telephone systems, the received speech signal is fed back to the microphone and constitutes the so-called echo. To cancel the effect of this time-varying echo path, it is necessary to device an adaptive filter between the receiving and the transmitting ends. For a typical FIR realization, the length of the fullband adaptive filter results in high computational complexity and low convergence rate. Consequently, subband adaptive filtering schemes have been proposed to improve the performance. In this work, we use deterministic approach to analyze the relationship between fullband and subband adaptive filtering structures. With block adaptive filtering structure as an intermediate stage, the analysis is divided into two parts. First, to avoid aliasing, it is found that the matrix of block adaptive filters is in the form of pseudocirculant, and the elements of this matrix are the polyphase components of the fullband adaptive filter. Second, to transmit the near-end voice signal faithfully, the analysis and the synthesis filter banks in the subband adaptive filtering structure must form a perfect reconstruction pair. Using polyphase representation, the relationship between the block and the subband adaptive filters is derived.

  • PDF

이산시간 강인 필터링 문제를 위한 통합 설계기법 (A Unified Approach to Discrete Time Robust Filtering Problem)

  • 나원상;진승희;윤태성;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.592-595
    • /
    • 1999
  • In this paper, we propose a unified method to solve the various robust filtering problem for a class of uncertain discrete time systems. Generally, to solve the robust filtering problem, we must convert the convex optimization problem with uncertainty blocks to the uncertainty free convex optimization problem. To do this, we derive the robust matrix inequality problem. This technique involves using constant scaling parameter which can be optimized by solving a linear matrix inequality problem. Therefore, the robust matrix inequality problem does not conservative. The robust filter can be designed by using this robust matrix inequality problem and by considering its solvability conditions.

  • PDF

Handling Incomplete Data Problem in Collaborative Filtering System

  • Noh, Hyun-ju;Kwak, Min-jung;Han, In-goo
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 Proceeding
    • /
    • pp.105-110
    • /
    • 2003
  • Collaborative filtering is one of the methodologies that are most widely used for recommendation system. It is based on a data matrix of each customer's preferences of products. There could be a lot of missing values in such preference. data matrix. This incomplete data is one of the reasons to deteriorate the accuracy of recommendation system. Multiple imputation method imputes m values for each missing value. It overcomes flaws of single imputation approaches through considering the uncertainty of missing values.. The objective of this paper is to suggest multiple imputation-based collaborative filtering approach for recommendation system to improve the accuracy in prediction performance. The experimental works show that the proposed approach provides better performance than the traditional Collaborative filtering approach, especially in case that there are a lot of missing values in dataset used for recommendation system.

  • PDF

Collaborative Filtering Algorithm Based on User-Item Attribute Preference

  • Ji, JiaQi;Chung, Yeongjee
    • Journal of information and communication convergence engineering
    • /
    • 제17권2호
    • /
    • pp.135-141
    • /
    • 2019
  • Collaborative filtering algorithms often encounter data sparsity issues. To overcome this issue, auxiliary information of relevant items is analyzed and an item attribute matrix is derived. In this study, we combine the user-item attribute preference with the traditional similarity calculation method to develop an improved similarity calculation approach and use weights to control the importance of these two elements. A collaborative filtering algorithm based on user-item attribute preference is proposed. The experimental results show that the performance of the recommender system is the most optimal when the weight of traditional similarity is equal to that of user-item attribute preference similarity. Although the rating-matrix is sparse, better recommendation results can be obtained by adding a suitable proportion of user-item attribute preference similarity. Moreover, the mean absolute error of the proposed approach is less than that of two traditional collaborative filtering algorithms.

Movie Recommendation Algorithm Using Social Network Analysis to Alleviate Cold-Start Problem

  • Xinchang, Khamphaphone;Vilakone, Phonexay;Park, Doo-Soon
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.616-631
    • /
    • 2019
  • With the rapid increase of information on the World Wide Web, finding useful information on the internet has become a major problem. The recommendation system helps users make decisions in complex data areas where the amount of data available is large. There are many methods that have been proposed in the recommender system. Collaborative filtering is a popular method widely used in the recommendation system. However, collaborative filtering methods still have some problems, namely cold-start problem. In this paper, we propose a movie recommendation system by using social network analysis and collaborative filtering to solve this problem associated with collaborative filtering methods. We applied personal propensity of users such as age, gender, and occupation to make relationship matrix between users, and the relationship matrix is applied to cluster user by using community detection based on edge betweenness centrality. Then the recommended system will suggest movies which were previously interested by users in the group to new users. We show shown that the proposed method is a very efficient method using mean absolute error.

DISCRETE-TIME MIXED $H_2/H_{\infty}$ FILTER DESIGN USING THE LMI APPROACH

  • Ryu, Hee-Seob;Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.129-132
    • /
    • 1999
  • This paper deals with the optimal filtering problem constrained to input noise signal corrupting the measurement output for linear discrete-time systems. The transfer matrix H$_2$and/or H$_{\infty}$ norms are used as criteria in an estimation error sense. In this paper, the mixed $H_2/H_{\infty}$ filtering Problem in lineal discrete-time systems is solved using the LMI approach, yielding a compromise between the H$_2$and H$_{\infty}$ filter designs. This filter design problems we formulated in a convex optimization framework using linear matrix inequalities. A numerical example is presented.

  • PDF

삼대각선행열의 행열식 고유값 및 역행열 (Determinant Eigenvalue and Inverse Matrix of a Tridiagonal Matrix)

  • Lee, Doo-Soo
    • 대한전자공학회논문지
    • /
    • 제23권4호
    • /
    • pp.455-459
    • /
    • 1986
  • A large set of linear equations which arise in many applications, such as in digital signal processing, image filtering, estimation theory, numerical analysis, etc. involve the problem of a tridiagonal matrix. In this paper, the determinant, eigenvalue and inverse matrix of a tridiagoanl matrix are analytically evaluated.

  • PDF

A STUDY ON INITIAL CONVERGENCE PROPERTIES OF THE KALMAN FILLTERING ALGORITHM

  • Park, Dong-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국제학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.1051-1054
    • /
    • 1988
  • In this paper we present initial convergence properties of the Kalman filtering algorithm, we put an arbitrary small positive correlation matrix as an initial condition in the recursive algorithm. This arbitrary small initial condition perturbs the Kalman filtering algorithm and may lead to initial instability. We derive a condition which insures the stable operation of the Kalman filtering algorithm from the stochastic Lyapunov difference equation.

  • PDF