• Title/Summary/Keyword: Mathematics Reasoning

Search Result 378, Processing Time 0.03 seconds

Teacher Change in Teaching Practices Towards Developing Students' Reasoning in Mathematics

  • Kim, Hee-Jeong
    • Research in Mathematical Education
    • /
    • v.18 no.3
    • /
    • pp.223-234
    • /
    • 2014
  • Research shows that formative assessment has a more powerful effect on student learning than summative assessment. This case study of an 8th grade algebra classroom focuses on how the implementation of Formative Assessment Lessons (FALs) and the participation in teacher learning communities related to FALs changed in the teacher's instructional practices, over the course of a year, to promote students' mathematical reasoning and justification. Two classroom observations are analyzed to identify how the teacher elicited and built on students' mathematical reasoning, and how the teacher prompted students to respond to and develop one another's mathematical ideas. Findings show that the teacher solicited students' reasoning more often as the academic year progressed, and students also began developing mathematical reasoning in meaningful ways, such as articulating their mathematical thinking, responding to other students' reasoning, and building on those ideas leading by the teacher. However, findings also show that teacher change in teaching practices is complicated and intertwined with various dimensions of teacher development. This study contributes to the understanding of changes in teaching practices, which has significant implications for teacher professional development and frameworks for investigating teacher learning.

Solving Three Types of Analogy Tasks by the Mathematically Gifted (영재아들의 세 유형의 유추 과제 해결)

  • Lee, Kyung-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.1
    • /
    • pp.45-61
    • /
    • 2009
  • The powerful role of analogical reasoning in discovering mathematics is well substantiated in the history of mathematics. Mathematically gifted students, thus, are encouraged to learn via in-depth exploration on their own based on analogical reasoning. In this study, 57 gifted students (31in the 7th and 26 8th grade) were asked to formulate or clarify analogy. Students produced fruitful constructs led by analogical reasoning. Participants in this study appeared to experience the deep thinking that is necessary to solve problems made with analogies, a process equivalent to the one that mathematicians undertake. The subjects had to reflect on prior knowledge and develop new concepts such as an orthogonal projection and a point of intersection of perpendicular lines based on analogical reasoning. All subjects were found adept at making meaningful analogues of a triangle since they all made use of meta-cognition when searching relations for analogies. In the future, methodologies including the development of tasks and teaching settings, measures to evaluate the depth of mathematic exploration through analogy, and research on how to promote education related to analogy for gifted students will enhance gifted student mathematics education.

  • PDF

A Comparison of Students' Reasoning Shown in Solving Open-Ended and Multiple-Choice Problems (개방형 문제와 선택형 문제 해결에 나타난 학생의 추론 비교)

  • Lee, Myoung Hwa;Kim, Sun Hee
    • School Mathematics
    • /
    • v.19 no.1
    • /
    • pp.153-170
    • /
    • 2017
  • This study conducted an analysis of types of reasoning shown in students' solving a problem and processes of students' reasoning according to type of problem by posing an open-ended problem where students' reasoning activity is expected to be vigorous and a multiple-choice problem with which students are familiar. And it examined teacher's role of promoting the reasoning in solving an open-ended problem. Students showed more various types of reasoning in solving an open-ended problem compared with multiple-choice problem, and showed a process of extending the reasoning as chains of reasoning are performed. Abduction, a type of students' probable reasoning, was active in the open-ended problem, accordingly teacher played a role of encouragement, prompt and guidance. Teachers posed a problem after varying it from previous problem type to open-ended problem in teaching and evaluation, and played a role of helping students' reasoning become more vigorous by proper questioning when students had difficulty reasoning.

The Analysis of Proportional Reasoning Tasks in Elementary School Mathematics Textbooks (초등학교 수학 교과서에 제시된 비례추론 과제의 분석)

  • Song, Dong Hyun;Park, Young Hee
    • Education of Primary School Mathematics
    • /
    • v.25 no.1
    • /
    • pp.57-79
    • /
    • 2022
  • Current mathematics It is necessary to ensure that ratio and proportion concept is not distorted or broken while being treated as if they were easy to teach and learn in school. Therefore, the purpose of this study is to analyze the activities presented in the textbook. Based on prior work, this study reinterpreted the proportional reasoning task from the proportional perspective of Beckmann and Izsak(2015) to the multiplicative structure of Vergnaud(1996) in four ways. This compared how they interpreted the multiplicative structure and relationships between two measurement spaces of ratio and rate units and proportional expression and proportional distribution units presented in the revised textbooks of 2007, 2009, and 2015 curriculum. First, the study found that the proportional reasoning task presented in the ratio and rate section varied by increasing both the ratio structure type and the proportional reasoning activity during the 2009 curriculum, but simplified the content by decreasing both the percentage structure type and the proportional reasoning activity. In addition, during the 2015 curriculum, the content was simplified by decreasing both the type of multiplicative structure of ratio and rate and the type of proportional reasoning, but both the type of multiplicative structure of percentage and the content varied. Second, the study found that, the proportional reasoning task presented in the proportional expression and proportional distribute sections was similar to the previous one, as both the type of multiplicative structure and the type of proportional reasoning strategy increased during the 2009 curriculum. In addition, during the 2015 curriculum, both the type of multiplicative structure and the activity of proportional reasoning increased, but the proportional distribution were similar to the previous one as there was no significant change in the type of multiplicative structure and proportional reasoning. Therefore, teachers need to make efforts to analyze the multiplicative structure and proportional reasoning strategies of the activities presented in the textbook and reconstruct them according to the concepts to teach them so that students can experience proportional reasoning in various situations.

Multiplicative reasoning in fractional contexts: Employing domain analysis and taxonomic analysis (분수맥락에서의 곱셈 추론: Domain Analysis and Taxonomic Analysis를 적용하여)

  • Lee, Hyung-Sook
    • School Mathematics
    • /
    • v.9 no.3
    • /
    • pp.427-445
    • /
    • 2007
  • This study presents the results of a case study that investigated a seventh grader's fractional reasoning related to multiplicative reasoning. In addition, by employing domain analysis and taxonomic analysis for analyzing qualitative data, I show how a qualitative methodology was used for the data collected by teaching experiment methodology. The study identifies three distinct issues that emerged as the student engaged in solving fraction problems: a view of fractions as operations vs. results, the issue of units, and mixed numbers vs. improper fractions. These three issues have instructional implications in that each of them is critical in developing multiplicative reasoning and investigating how they relate to each other suggests a way to improve multiplicative reasoning in fractional contexts.

  • PDF

A Study on Teaching Method of Area Formulas in Plane Figures - Inductive Reasoning vs. Problem Solving - (평면도형의 넓이 지도 방법에 대한 고찰 - 귀납적 방법 대 문제해결식 방법 -)

  • Kang, Moonbong;Kim, Jeongha
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.3
    • /
    • pp.461-472
    • /
    • 2015
  • Korean students are taught area formulas of parallelogram and triangle by inductive reasoning in current curriculum. Inductive thinking is a crucial goal in mathematics education. There are, however, many problems to understand area formula inductively. In this study, those problems are illuminated theoretically and investigated in the class of 5th graders. One way to teach area formulas is suggested by means of process of problem solving with transforming figures.

Covariational Reasoning of Ninth Graders in Reciprocal Peer Tutoring Process (상호또래교수과정에서 나타나는 중학교 3학년 학생들의 공변 추론)

  • Gil, Seung Ho;Shin, Jaehong
    • Journal of the Korean School Mathematics Society
    • /
    • v.23 no.3
    • /
    • pp.323-349
    • /
    • 2020
  • In this study, we conducted eight reciprocal peer tutoring classes where each student took either role of a tutor or a tutee to study covariational reasoning in ninth graders. Students were given the opportunity to teach their peers with their covariational reasoning as tutors, and at the same time to learn covariational reasoning as tutees. A heterogeneous group was formed so that scaffolding could be provided in the teaching and learning process. A total of eight reciprocal peer tutoring worksheets were collected: four quantitative graph type questions and four questions of the qualitative graph to the group. The results of the analysis are as follows. In reciprocal peer tutoring, students who experienced a higher level of covariational reasoning than their covariational reasoning level showed an improvement in covariational reasoning levels. In addition, students enhanced the completeness of reasoning by modifying or supplementing their own covariational reasoning. Minimal teacher intervention or high-level peer mediation seems to be needed for providing feedback on problem-solving results.

Students Opportunities to Develop Scientific Argumentation in the Context of Scientific Inquiry: A Review of Literature

  • Flick, Larry;Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.25 no.3
    • /
    • pp.194-204
    • /
    • 2004
  • The purpose of this literature review is to investigate what kinds of research have been done about scientific inquiry in terms of scientific argumentation in the classroom context from the upper elementary to the high school levels. First, science educators argued that there had not been differentiation between authentic scientific inquiry by scientists and school scientific inquiry by students in the classroom. This uncertainty of goals or definition of scientific inquiry has led to the problem or limitation of implementing scientific inquiry in the classroom. It was also pointed out that students' learning science as inquiry has been done without opportunities of argumentation to understand how scientific knowledge is constructed. Second, what is scientific argumentation, then? Researchers stated that scientific inquiry in the classroom cannot be guaranteed only through hands-on experimentation. Students can understand how scientific knowledge is constructed through their reasoning skills using opportunities of argumentation based on their procedural skills using opportunities of experimentation. Third, many researchers emphasized the social practices of small or whole group work for enhancing students' scientific reasoning skills through argumentations. Different role of leadership in groups and existence of teachers' roles are found to have potential in enhancing students' scientific reasoning skills to understand science as inquiry. Fourth, what is scientific reasoning? Scientific reasoning is defined as an ability to differentiate evidence or data from theory and coordinate them to construct their scientific knowledge based on their collection of data (Kuhn, 1989, 1992; Dunbar & Klahr, 1988, 1989; Reif & Larkin, 1991). Those researchers found that students skills in scientific reasoning are different from scientists. Fifth, for the purpose of enhancing students' scientific reasoning skills to understand how scientific knowledge is constructed, other researchers suggested that teachers' roles in scaffolding could help students develop those skills. Based on this literature review, it is important to find what kinds of generalizable teaching strategies teachers use for students scientific reasoning skills through scientific argumentation and investigate teachers' knowledge of scientific argumentation in the context of scientific inquiry. The relationship between teachers' knowledge and their teaching strategies and between teachers teaching strategies and students scientific reasoning skills can be found out if there is any.

Developing Exploratory Activities with Geometer's Sketchpad and Its' Efficacy on Geometric Reasoning of College Students (탐구형 기하 소프트웨어(Geometer's Sketchpad)의 활동 자료 개발과 그 효과에 관한 연구)

  • 장경윤;황우형;이중권
    • Journal of Educational Research in Mathematics
    • /
    • v.11 no.1
    • /
    • pp.193-206
    • /
    • 2001
  • This study was designed to develop investigation- and exploration- activities on Euclidean geometry with an exploratory type software, Geometer's Sketchpad, and to gain insights into the geometric reasoning abilities of college students working with the software. A package of Euclidean geometric activities with GSP was developed and four college students worked on the several activities with GSP and their geometric reasoning process were analyzed. Results indicated that GSP helped students solve problems in the several ways: to make conjectures and discover theorems by providing precise construction and measurement; to discover their proofs by providing the visual images and its manipulation; and to make students easily apply "what-if"strategies and expand and deepen their activities. Students' geometric reasoning was highly depended on analytic methods and their abilities with synthetic methods were shown very limited.

  • PDF

Abduction As A Mathematical Resoning. (수학적 추론으로서의 가추법)

  • 김선희;이종희
    • Journal of Educational Research in Mathematics
    • /
    • v.12 no.2
    • /
    • pp.275-290
    • /
    • 2002
  • This Study takes Peirce' abduction which is Phenomenology' first reasoning mode, as a part of mathematical reasoning with deduction and induction. Abduction(retroduction, hypothesis, presumption, and originary argument) leads a case through a result and a rule, while deduction leads a result through a rule and a case and induction leads a rule through a case and a result. Polya(1954) involved generalization, specialization, and analogy within induction, but this paper contain analogy in abduction. And metaphors and metonymies are also contained in abduction, in which metaphors are contained in analogy. Metaphors and metonymies are applied to semiosis i.e. the signification of mathematical signs. Semiotic analysis for a student's problem solving showed the semiosis with metaphors and metonimies. Thus, abductions should be regarded as a mathematical reasoning, and we must utilize abductions in mathematical teaming since abductions are thought as a natural reasoning by students.

  • PDF