• Title/Summary/Keyword: Mathematics Education method

Search Result 1,146, Processing Time 0.03 seconds

On the Method of Using 1÷(divisor) in Quotitive Division for Comprehensive Understanding of Division of Fractions (분수 나눗셈의 통합적 이해를 위한 방편으로서 포함제에서 1÷(제수)를 매개로 하는 방법에 대한 고찰)

  • Yim, Jaehoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.22 no.4
    • /
    • pp.385-403
    • /
    • 2018
  • Fraction division can be categorized as partitive division, measurement division, and the inverse of a Cartesian product. In the contexts of quotitive division and the inverse of a Cartesian product, the multiply-by-the-reciprocal algorithm is drawn well out. In this study, I analyze the potential and significance of the method of using $1{\div}$(divisor) as an alternative way of developing the multiply-by-the-reciprocal algorithm in the context of quotitive division. The method of using $1{\div}$(divisor) in quotitive division has the following advantages. First, by this method we can draw the multiply-by-the-reciprocal algorithm keeping connection with the context of quotitive division. Second, as in other contexts, this method focuses on the multiplicative relationship between the divisor and 1. Third, as in other contexts, this method investigates the multiplicative relationship between the divisor and 1 by two kinds of reasoning that use either ${\frac{1}{the\;denominator\;of\;the\;divisor}}$ or the numerator of the divisor as a stepping stone. These advantages indicates the potential of this method in understanding the multiply-by-the-reciprocal algorithm as the common structure of fraction division. This method is based on the dual meaning of a fraction as a quantity and the composition of times which the current elementary mathematics textbook does not focus on. It is necessary to pay attention to how to form this basis when developing teaching materials for fraction division.

  • PDF

Development of Estimation Algorithm of Latent Ability and Item Parameters in IRT (문항반응이론에서 피험자 능력 및 문항모수 추정 알고리즘 개발)

  • Choi, Hang-Seok;Cha, Kyung-Joon;Kim, Sung-Hoon;Park, Chung;Park, Young-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.3
    • /
    • pp.465-481
    • /
    • 2008
  • Item response theory(IRT) estimates latent ability of a subject based on the property of item and item parameters using item characteristics curve(ICC) of each item case. The initial value and another problems occurs when we try to estimate item parameters of IRT(e.g. the maximum likelihood estimate). Thus, we propose the asymptotic approximation method(AAM) to solve the above mentioned problems. We notice that the proposed method can be thought as an alternative to estimate item parameters when we have small size of data or need to estimate items with local fluctuations. We developed 'Any Assess' and tested reliability of the system result by simulating a practical use possibility.

Cognitive Effects of Mathematical Pre-experiences on Learning in Elementary School Mathematics (수학적 선행경험이 산수학습에 미치는 인지적 효과)

  • Lee Myong Sook;Jeon Pyung Kook
    • The Mathematical Education
    • /
    • v.31 no.2
    • /
    • pp.93-107
    • /
    • 1992
  • The purpose of this study is to make out teaching-learning method for developing mathematical abilities of the 1st grade children in elementary school by investigating cognitive effects which mathematical pre-experiences given intentionally by teachers have on children's learning mathematics. The research questions for this purpose are as follows: In learning effects through mathematical pre-experiences given intentionally by teachers. 1) is there any differences between children with pre-experiences and children without them in Mathematics Achievement Test\ulcorner 2) is there any differences between children with pre-experiences and children without them in Transfer Test for learning effects\ulcorner For this study, a class with 41 children in H elementary school located in a Myon near Chong-ju was selected as an experimental group and a class with 43 children in G elementary school in the same Myon was selected as a control group. Nonequivalent Control Group Design of Quasi-Experimental Design was applied to this study. To give pre-experiences to the children in experimental group, their classroom was equipped with materials for pre-experiences, so children could always observe the materials and play with them. The materials were a round-clock on the wall, two pairs of scales, fifty dice, some small pebbles, two pairs of weight scales, two rulers on the wall, and various cards for playing games. Pre-experiences were given to the children repeatedly through games and observations during free time in the morning (00:20-09:00) and intervals between periods. There was a pretest for homogeneity of mathematics achievement between the two groups and were Mathematics Achievement Test (30 items) and Transfer Test (25 items) for learning effects as post-tests. The data were collected from the pretest on April 8 (control group), on April 11 (experimental group) and from the Mathematics Achievement Test and Transfer Test on July 15 (experimental group) and on July 16 (control group). T-test was used to analyze if there were any differences in the results of the test. The results of the analysis were as follows: (1) As the result of pretest, there was not a significance difference between the experimental group (M=17.10. SD=7.465) and the control group (M=16.31, SD=6.974) at p<.05 (p=0.632). (2) For the question 1. in the Mathematics Achievement Test, there was a significant difference between the experimental group (M=26.08, SD=4.827) and the control group (M=22.28. SD=5.913) at p<.01 (p=.003). (3) For the question 2. in the Transfer Test for learning effects. there was a significant difference between the experimental group (M=16.41, SD=5.800) and the control group (M=11.84, SD=4.815) at p<001, (p=.000). From the results of the analyses obtained in this study. the following conclusions can be drawn: First, mathematical pre-experiences given by teachers are effective in increasing mathematical achievement and transfer in learning mathematics. Second, games. observations, and experiments given intentionally by teachers can make children's mathematical experiences rich and various, and are effective in adjusting individual differences for the mathematical experiences obtained before they entered elementary schools. Third, it is necessary for teachers to give mathematical pre-experiences with close attention in order to stimulate children's mathematical interests and intellectual curiosity.

  • PDF

A Study on the Application of Context Problems and Preference for Context Problems Types (유형별 맥락문제의 적용과 그에 따른 유형별 선호도 조사)

  • Kim, Sung-Joon;Moon, Jeong-Hwa
    • Journal of the Korean School Mathematics Society
    • /
    • v.9 no.2
    • /
    • pp.141-161
    • /
    • 2006
  • In this study, we classified word problems related to real life presented in elementary mathematics textbooks into five types of context problems(location, story, project, scrap, theme) suggested by Freudenthal(1991), and applied context problems to mathematics class to analyze the influence on students' mathematical belief and attitude. Also, we examined the types of context problems preferred according to academic performance and the reasons of preference within a group experiencing context problems. The results of the study are as follows. First, almost lessons in the mathematics textbook presents word problems related to real life, but the presenting method is inclined to a story type. Also, the problems with a story type are presented fragmentarily. Therefore, although these word problems are familiar to the students, they don't include contextual meanings and cannot induce enough mathematical motives and interests. Second, a lesson using context problems give a positive influence on their mathematics belief and attitude. It is also expected to give a positive influence on students' mathematics learning in the long run. Third, the preferred types of context problems and the reasons of preference are different according to the level of academic performance within the experimental group.

  • PDF

Science Gifted/Talented Education System in KOREA (과학영재 교육체제 구축방안에 관한 연구)

  • 강호감;김명환;이상천;하종덕
    • Journal of Gifted/Talented Education
    • /
    • v.12 no.1
    • /
    • pp.61-76
    • /
    • 2002
  • The purpose of this study is to investigate the education system for science 34gifted/talented students in Korea. There are fifteen science gifted/talented education centers established in major universities, sixteen science high schools and one research center for the gifted education in science located at KAIST. To examine the selection procedure and the curriculum of the education centers and science high schools, the annual reports of the fifteen education centers and the annual plans of sixteen science high schools are analyzed. About 200 gifted/talented students are employed in the field of science, mathematics and information science at each education center, Multidimentional education system is developed for efficient way of teaching for the gifted. The curriculum and teaching method for each education center is unique and different from the science high schools that follow nationally given form. This study shows new selection method and unique curriculum for the science gifted/talented students employed in the education centers. Also, current situation of science high schools are reported in this study. Finally we suggest the systematic way of developing the education system for the gifted in science in korea.

On the Applications of the Genetic Decomposition of Mathematical Concepts -In the Case of $Z_n$ in Abstract Algebra- (수학적 개념의 발생적 분해의 적용에 대하여 -추상대수학에서의 $Z_n$의 경우-)

  • Park Hye Sook;Kim Suh-Ryung;Kim Wan Soon
    • The Mathematical Education
    • /
    • v.44 no.4 s.111
    • /
    • pp.547-563
    • /
    • 2005
  • There have been many papers reporting that the axiomatic approach in Abstract Algebra is a big obstacle to overcome for the students who are not trained to think in an abstract way. Therefore an instructor must seek for ways to help students grasp mathematical concepts in Abstract Algebra and select the ones suitable for students. Mathematics faculty and students generally consider Abstract Algebra in general and quotient groups in particular to be one of the most troublesome undergraduate subjects. For, an individual's knowledge of the concept of group should include an understanding of various mathematical properties and constructions including groups consisting of undefined elements and a binary operation satisfying the axioms. Even if one begins with a very concrete group, the transition from the group to one of its quotient changes the nature of the elements and forces a student to deal with elements that are undefined. In fact, we also have found through running abstract algebra courses for several years that students have considerable difficulty in understanding the concept of quotient groups. Based on the above observation, we explore and analyze the nature of students' knowledge about $Z_n$ that is the set of congruence classes modulo n. Applying the genetic decomposition method, we propose a model to lead students to achieve the correct concept of $Z_n$.

  • PDF

An analysis of Mathematical Knowledge for Teaching of statistical estimation (통계적 추정을 가르치기 위한 수학적 지식(MKT)의 분석)

  • Choi, Min Jeong;Lee, Jong Hak;Kim, Won Kyung
    • The Mathematical Education
    • /
    • v.55 no.3
    • /
    • pp.317-334
    • /
    • 2016
  • Knowledge and data interpretation on statistical estimation was important to have statistical literacy that current curriculum was said not to satisfy. The author investigated mathematics teachers' MKT on statistical estimation concerning interpretation of confidence interval by using questionnaire and interview. SMK of teachers' confidence was limited to the area of textbooks to be difficult to interpret data of real life context. Most of teachers wrongly understood SMK of interpretation of confidence interval to have influence upon PCK making correction of students' wrong concept. SMK of samples and sampling distribution that were basic concept of reliability and confidence interval cognized representation of samples rather exactly not to understand importance and value of not only variability but also size of the sample exactly, and not to cognize appropriateness and needs of each stage from sampling to confidence interval estimation to have great difficulty at proper teaching of statistical estimation. PCK that had teaching method had problem of a lot of misconception. MKT of sample and sampling distribution that interpreted confidence interval had almost no relation with teachers' experience to require opportunity for development of teacher professionalism. Therefore, teachers were asked to estimate statistic and to get confidence interval and to understand concept of the sample and think much of not only relationship of each concept but also validity of estimated values, and to have knowledge enough to interpret data of real life contexts, and to think and discuss students' concepts. So, textbooks should introduce actual concepts at real life context to make use of exact orthography and to let teachers be reeducated for development of professionalism.

The Theoretical Generalization Appling the Strategy(WIOS) finding an Intrinsic Attribute (본질적 속성 찾기 전략(WIOS)을 통한 이론적 일반화)

  • Roh, Eun-Hwan;Jun, Young-Bae;Kang, Jeong-Gi
    • Communications of Mathematical Education
    • /
    • v.26 no.1
    • /
    • pp.51-69
    • /
    • 2012
  • The cognition of an intrinsic attribute play an important role in the process of theoretical generalization. It is the aim of this paper to study how the theoretical generalization is made. First of all, we suggest the What-if-only-strategy(WIOS) which is the strategy helping the cognition of an intrinsic attribute. And we propose the process of the theoretical generalization that go on the cognitive stage, WIOS stage, conjecture stage, justification stage and insight into an intrinsic attribute in order. We propose the process of generalization adding the concrete process cognizing an intrinsic attribute to the existing process of generalization. And we applied the proposed process of generalization to two mathematical theorem which is being managed in middle school. We got a conclusion that the what-if-only strategy is an useful method of generalization for the proposition. We hope that the what-if-only strategy is helpful for both teaching and learning the mathematical generalization.

An Analysis of the International Trends of Research on Artificial Intelligence in Education Using Topic Modeling (인공지능 활용 교육의 토픽모델링 분석을 통한 수학교육 연구 방향의 함의)

  • Noh, Jihwa;Ko, Ho Kyoung;Kim, Byeongsoo;Huh, Nan
    • Journal of the Korean School Mathematics Society
    • /
    • v.26 no.1
    • /
    • pp.1-19
    • /
    • 2023
  • This study analyzed the international trends of research concerning artificial intelligence in education by examining 352 papers recently published in the International Journal of Artificial Intelligence in Education(IJAIED) with the topic modeling method. The IJAIED is the official, SCOPUS-indexed journal of the International AIED Society. The analysis revealed that international AIED research trends could be categorized into eight topics with topics such as analyzing student behavior model in learning systems and designing feedback to student solutions being increased over time, whereas research focusing on data handling methods was decreased over time. Based on the findings implications and suggestions for the research and development of the applications of AIED were provided.

Using Simulation for a Didactic Transposition of Probability (시뮬레이션을 활용한 확률 지식의 교수학적 변환)

  • Shin, Bo-Mi;Lee, Kyung-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.18 no.1
    • /
    • pp.25-50
    • /
    • 2008
  • Several previous studies suggested that simulation could be a main didactic instrument in overcoming misconception and probability modeling. However, they have not described enough how to reorganize probability knowledge as knowledge to be taught in a curriculum using simulation. The purpose of this study is to identify the theoretical knowledge needed in developing a didactic transposition method of probability knowledge using simulation. The theoretical knowledge needed to develop this method was specified as follows : pseudo-contextualization/pseudo-personalization, and pseudo-decontextualization/pseudo-deper-sonalization according to the introductory purposes of simulation. As a result, this study developed a local instruction theory and an hypothetical learning trajectory for overcoming misconceptions and modeling situations respectively. This study summed up educational intention, which was designed to transform probability knowledge into didactic according to the introductory purposes of simulation, into curriculum, lesson plans, and experimental teaching materials to present didactic ideas for new probability education programs in the high school probability curriculum.

  • PDF