• Title/Summary/Keyword: Mathematical theory

Search Result 2,191, Processing Time 0.024 seconds

Cognitive Psychological Approaches on Analysing Students' Mathematical Errors (인지심리학의 관점에서 수학적 오류의 분석가능성 탐색)

  • 김부미
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.3
    • /
    • pp.239-266
    • /
    • 2004
  • This article presents new perspectives for analysing and diagnosing students' mathematical errors on the basis of Pascaul-Leone's neo-Piagetian theory. Although Pascaul-Leone's theory is a cognitive developmental theory, its psychological mechanism gives us new insights on mathematical errors. We analyze mathematical errors in the domain of proof problem solving comparing Pascaul-Leone's psychological mechanism with mathematical errors and diagnose misleading factors using Schoenfeld's levels of analysis and structure and fuzzy cognitive map(FCM). FCM can present with cause and effect among preconceptions or misconceptions that students have about prerequisite proof knowledge and problem solving. Conclusions could be summarized as follows: 1) Students' mathematical errors on proof problem solving and LC learning structures have the same nature. 2) Structures in items of students' mathematical errors and misleading factor structures in cognitive tasks affect mental processes with the same activation mechanism. 3) LC learning structures were activated preferentially in knowledge structures by F operator. With the same activation mechanism, the process students' mathematical errors were activated firstly among conceptions could be explained.

  • PDF

Computerized responses of spinning NEMS via numerical and mathematical modeling

  • Zhou, Lingao
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.629-641
    • /
    • 2022
  • This study deals with the spinning impact on flap-wise vibration characteristics of nonlocal functionally graded (FG) cylindrical beam based on the Hyperbolic shear deformation beam theory. The nonlocal strain gradient theory is used to investigate the small-scale impact on the nonlocal motion equation as well as corresponding nonlocal boundary conditions. Based on the mathematical simulation and according to the Hamilton principle, the computerized modeling of a rotating functionally graded nanotube is generated, and then, via a numerical approach, the obtained mathematical equations are solved. The calculated outcomes are helpful to the production of Nano-electro-mechanical-systems (NEMS) by investigating some designed parameters such as rotating speed, hub radius, length-scale parameters, volume fraction parameters, etc.

RECENT DEVELOPMENTS IN DIFERENTIAL GEOMETRY AND MATHEMATICAL PHYSICS

  • Flaherty, F.J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 1987
  • I want to focus on developments in the areas of general relativity and gauge theory. The topics to be considered are the singularity theorms of Hawking and Penrose, the positivity of mass, instantons on the four-dimensional sphere, and the string picture of quantum gravity. I should mention that I will not have time do discuss either classical mechanics or symplectic structures. This is especially unfortunate, because one of the roots of differential geometry is planted firmly in mechanics, Cf. [GS]. The French geometer Elie Cartan first formulated his invariant approach to geometry in a series of papers on affine connections and general relativity, Cf. [C]. Cartan was trying to recast the Newtonian theory of gravity in the same framework as Einstein's theory. From the historical perspective it is significant that Cartan found relativity a convenient framework for his ideas. As about the same time Hermann Weyl in troduced the idea of gauge theory into geometry for purposes much different than those for which it would ultimately prove successful, Cf. [W]. Weyl wanted to unify gravity with electromagnetism and though that a conformal structure would fulfill thel task but Einstein rebutted this approach.

  • PDF

An Effective Method for Mathematics Teaching and Learning in Characterization High School (특성화고교에서의 효과적인 수학교육 방안)

  • Lee, Seung Hwa;Kim, Dong Hwa
    • East Asian mathematical journal
    • /
    • v.31 no.4
    • /
    • pp.569-585
    • /
    • 2015
  • Many mathematics teachers in characterization high schools have been troubled to teach students because most of the students have weak interests in mathematics and they are also lack of preliminary mathematical knowledges. Currently many of mathematics teachers in such schools teach students using worksheets owing to the situation that proper textbooks for the students are not available. In this study, we referred to Chevallard's didactic transposition theory based on Brousseau's theory of didactical situations for mathematical teaching and learning. Our lessons utilizing worksheets necessarily entail encouragement of students' self-directed activities, active interactions, and checking the degree of accomplishment of the goal for each class. Through this study, we recognized that the elaborate worksheets considering students' level, follow-up auxiliary materials that help students learn new mathematical notions through simple repetition if necessary, continuous interactions in class, and students' mathematical activities in realistic situations were all very important factors for effective mathematical teaching and learning.