이 論文은 1981年度 文教部 学術研究 助成費에 의하여 研究되었음

ON THE THEORY OF OBSTRUCTION

By HEE JIN LEE*

§ 1. Introduction

Recently, the obstruction theory has been extended to

- (i) the cross section theory of fiber spaces ([3], [6]),
- (ii) the foliation theory ([1]),
- (iii) the theory of characteristic classes ([5]),
- (iv) the extension theory of group rings ([4]).

The purpose of this note is to prove one property with respect to (i) above.

That is, we shall prove that under some conditions for a fiber bundle

 $\pi: E \rightarrow X$ (X is a finite CW-complex and each fiber is n-simple)

$$A_{s_0}^n = Q_{\theta}^n(X, A; B_n) = H^n(X, A; B_n),$$

where A is a subcomplex of X (Theorem 13).

In §§ 2 and 3, we have explained and proved some terminologies and some properties with respect to the obstruction theory which is needed to understand Theorem 13. Finally, in § 4 we shall prove Theorem 13.

§ 2. Preliminaries

Let $\triangle^n = (e_o, \dots e_n)$ be the standard n-simplex. For a CW-complex and a singular n-simplex $f: \triangle^n \to X$ with $f(e_o) = x_o$, there exists a continuous map $\widetilde{f}: \triangle^n \times \pi^{-1}(x_o) \to Y$ satisfying the conditions:

$$\widetilde{\pi_{of}}(z, y) = z, \quad \widetilde{f}(e_o, y) = y,$$

where $\pi: Y \to X$ is a fiber bundle. For any two points x_0 and x_1 we put $\Omega(X; x_0, x_1) = \{ \omega : [0, 1] \to X \mid \omega \text{ is continuous with } \omega(0) = x_0 \text{ and } \omega(1) = x_1 \}.$

Then, for each $\omega \in \Omega$ $(X; x_0, x_1)$ there is a continuous map

$$\widetilde{\omega}: [0, 1] \times \pi^{-1}(x_0) \to Y$$
 such that

* This research is supported by Research grant of Ministry of Education in 1981.

$$\pi \circ \widetilde{\omega}(t, y) = \omega(t), \qquad \widetilde{\omega}(0, y) = y.$$

Furthermore, if we put $\hat{\omega} = \widetilde{\omega} \mid 1 \times \pi^{-1}(x_0) : \pi^{-1}(x_0) \to \pi^{-1}(x_1)$ then the homotopy class of $\hat{\omega}$ is determind by the homotopy class α of ω . If we put

 $[\pi^{-1}(x_0), \pi^{-1}(x_1)]$ = the set of homotopy classes from $\pi^{-1}(x_0)$ to $\pi^{-1}(x_1)$, we write the above fact by $\hat{\alpha} \in [\pi^{-1}(x_0), \pi^{-1}(x_1)]$. In particular, $\hat{\alpha}$ induces the isomorphism $\hat{\alpha}: H_n(\pi^{-1}(x_0); G) \to H_n(\pi^{-1}(x_1); G)$, where G is an abelian group.

In this note, we only consider the category F_b which is defined as follows. Every object of F_b is a fiber bundle $\pi: E \to X$ such that X is a finite CW-complex and each fiber is pathwise connected and n-simple ([2]).

Every morphism of F_b is a bundle map ([3]). Since each fiber of $\pi: E \to X$ in F_b is n-simple for each $x \in X$ and $\widetilde{x} \in \pi^{-1}(x)$ $\pi_n(\pi^{-1}(x), \widetilde{x}) = \pi_n(\pi^{-1}(x))$ is abelian for all $n = 1, 2, \dots$. Moreover, for each $\omega \in \Omega$ $(X; x_0, x_1)$ and $[\omega] = \alpha$ we have the isomorphism

$$\alpha^*$$
: $\pi_n(\pi^{-1}(x_0) - \pi_n(\pi^{-1}(x_1))$.

Let us put

$$B_n(x) = \pi_n(\pi^{-1}(x)), B_n(\alpha) = (\alpha^*)^{-1}, (x \in X)$$

then we get a locally system over X([2]).

 $1_{\triangle^n}=1_n:\triangle^n\to\triangle^n$ gives the orientation of \triangle^n by $[1_n]\in H^n(\triangle^n, \dot{\triangle}^n)$. Let $\sigma_\lambda\colon (\triangle^n, \dot{\triangle}^n)\to (X^{(n)}, X^{(n-1)})$ be a character map of a n-cell e_λ of X where $X^{(n)}$ is the n-dimensional skeleton. Then σ_{λ^*} ($[1_n]$) $\in H_n(X^{(n)}, X^{(n-1)})=C_n(X)$ gives the orientation of e_λ . For a subcomplex A of X we put $\overline{X}^{(n)}=A\cup X^{(n)}$. Suppose there is a cross section $s:\overline{X}^{(n)}\to E$. The obstruction theory rises from that whether or not there exists an extension $s':X^{(n+1)}\to E$.

Definition 1. Under the above situation the (n+1) - cochain

$$c^{n+1}(s) \in C^{n+1}(X, A; B_n) = H^{n+1}(\overline{X}^{(n+1)}, \overline{X}^{(n)}; B_n)$$

is defined as follows. For a (n+1) -cell e_{λ} of X and a character map $\sigma = \sigma_{\lambda}$: $(\triangle^{n+1}, \dot{\triangle}^{n+1}) \to (\overline{X}^{(n+1)}, \overline{X}^{(n)})$ we have the induced cross section

$$\sigma^*s: \triangle^{n+1} \to \sigma^*E$$

where $\sigma^*\pi: \sigma^*E \to \triangle^{n+1}$ is the induced bundle of $\sigma: \triangle^{n+1} \to \overline{X}^{(n+1)} \subset X$. Hence $\sigma^*E \subset \triangle^{n+1} \times E$, and for each $u \in \triangle^{n+1}$

$$(\sigma^*s)$$
 $(u) = (u, s \sigma(u)) \in \triangle^{n+1} \times E$.

Since $S^n \approx \triangle^{n+1}$ (homeomorphic) we may assume that $[\sigma^* s] \in \pi_n(\sigma^* E, \sigma^* s (e_o))$. We put

$$[\sigma^*s]=e^{n+1}(s,\sigma)$$

For $1 \triangle^{n+1} = \hat{1}_n : \triangle^{n+1} \rightarrow \triangle^{n+1}$ we have that

$$c^{n+1}(s, \sigma) = (\sigma^* s) * ([\hat{I}_n]) \in \pi_n(\sigma^* E), \sigma^* s(e_0).$$

In the fiber bundle $\sigma^*\pi: \sigma^*E \rightarrow \triangle^{n+1}$, since \triangle^{n+1} is contractible we have

$$\pi_n((\sigma^*\pi)^{-1}(e_o), (\sigma^*s)(e_o)) \cong \pi_n(\sigma^*E, (\sigma^*s)(e_o))$$

in the homotopy exact sequence of $\sigma^*E([3], [5], \text{ and } [6])$. In our category every fibre of a fiber bundle is homotopic, and thus

$$B_n(\sigma(e_o)) = \pi_n(\pi^{-1}(\sigma(e_o)) \cong \pi_n(\sigma^*E, (\sigma^*s)(e_o)).$$

That is, we put

where $c^{n+1}(s) \in C^{n+1}(X, A; B_n)$, $c^{n+1}(s)$ is called an obstruction cocycle of a cross section $s: \overline{X}^{-n} \to E$. (That $c^{n+1}(s)$ is a cocycle can be proved, see [1], [2]).

Definition 2. We consider a fiber bundle $\pi: E \to X$ in our category F_b . Let $s_o, s_1: \overline{X}^{(n)} \to E$ be two cross sections such that

- (i) $s_o \mid A = s_1 \mid A$
- (ii) \exists a homotopy $h: \overline{X}^{(n-1)} \times I \rightarrow E(I = [0, 1])$ such that $h: s_n \mid \overline{X}^{(n-1)}) \cong s_1 \mid \overline{X}^{(n-1)} \qquad \text{rel } A$

(for symbols see (3)). We are going to make a n cochain $d^n(s_0, s_1, h) \in C^n(X, A; B_n)$ as follows.

The fiber bundle $\pi \times 1 : E \times I \rightarrow X \times I$ has the same fiber of E and also $E \times I \in F_b$. Then we have

$$(X\times I)^{(n)} = X^{(n)} = X^{(n)} \times I \cup X^{(n-1)} \times I$$

and hence $X \times I^{(n)} = A \times I \cup (X \times I)^{(n)}$. A cross section $\overline{h} : \overline{X \times I^{(n)}} \to E$ is defined as follows:

$$\overline{h}(x, t) = \begin{cases} (h(x, t), t), (x, t) \in \overline{X}^{(n-1)} \times I \\ (s_o(x), 0), x \in \overline{X}^{(n)}, t = 0 \\ (s_1(x), 1), x \in \overline{X}^{(n)}, t = 1 \end{cases}$$

In this case $B_n(E \times I) = \overline{B}_n(E \times I)$ is the induced locally system from the locally system $B_n(E)$ (Note: $B_n(x, t) = B_n(x)$). For each n-cell e_λ of X we define $d^n(s_0, s_1, h)$ $(e_\lambda) = (-1)^n c(\overline{h}) (e_\lambda \times I) \in \overline{B}_n(\sigma_\lambda(e_0) \times 0) = B_n(\sigma_\lambda(e_0))$, and

 $d^n(s_o, s_1, h)$ is called a difference cochain of s_o and s_1 . If $s_o \mid \overline{X}^{(n-1)} = s_1 \mid \overline{X}^{(n-1)}$ and $h(x, t) = s_o(x)$ $((x, t) \in \overline{X}^{(n-1)} \times I)$ then we put

$$d(s_0, s_1, h) = d(s_0, s_1).$$

There are many properties with respect to obstruction cochains (proofs are omitted) ([2], [6]).

Property 3. Under the above circumstance

$$\delta d^{n}\left(s_{0}, s_{1}, h\right) = c^{n+1}\left(s_{1}\right) - c^{n+1}\left(s_{0}\right).$$

Property 4. For $n \ge 1$ if a cross section $s_0; \overline{X}^{(n)} \to E$ and a cochain $d \in C^n$ $(X, A; B_n)$ then there exists a cross section $s_1: \overline{X}^{(n)} \to E$ such that

$$s_0 \mid \overline{X}^{(n-1)}$$
 and $d^n(s_0, s_1) = d$.

Property 5. For a fiber bundle $\pi: E \to X \in F_b$ let $s_0, s_1, s_3: \overline{X}^{(n)} \to E$ be cross sections such that

 $h: s_0 \mid \overline{X}^{(n-1)} \cong s_1 \mid \overline{X}^{(n-1)} \text{ rel } A, \quad h': s_1 \mid \overline{X}^{(n-1)} \cong s_2 \mid \overline{X}^{(n-2)} \text{ rel } A.$ Then for a homotopy $k: \overline{X}^{(n-1)} \to E$ defined as

$$\kappa(x, t) = \begin{cases} h(x, 2t), & 0 \le t \le \frac{1}{2} \\ h'(x, 2t-1), & \frac{1}{2} \le t \le 1 \end{cases}$$

we have

$$d^{n}(s_{o}, s_{1}, h) + d^{n}(s_{1}, s_{2}, h') = d^{n}(s_{o}, s_{2}, k).$$

§ 3. Obstruction sets and $d^n(s_o, s_i, h)$

Definition 6. For a fiber bundle $\pi: E \to X$ and a subcomplex A of X, let $s: A \to E$ be a cross section. The (n+1)-dimensional obstruction set

$$O^{n+1}(s) \in H^{n+1}(X, A; B_n)$$

is defined as follows. If s is not extended to $\overline{X}^{(n)} \to E$ then O(s) is the vacuous set. Suppose s is extended to $s': \overline{X}^{(n)} \to E$ then we have the cohomology class $[c^{n+1}(s')] \in H^{n+1}(X, A; B_n)$ which is called the (n+1)-dimensional obstruction element of s. We define

 $O^{n+1}(s) = \{ (n+1) - \text{dimensional obstruction elements of } s \}.$ By our definition (Definition 6) the following can be easily proved.

- (i) As section $s_0 \approx s_1 : A \rightarrow E$ then $O^{n+1}(s_0) = O^{n+1}(s_1)$,
- (ii) If a cross section $s: A \rightarrow E$ can be extended to $\overline{X}^{n+1} \rightarrow E$ then $O^{n+1}(s)$

contains the zero element of H^{n+1} (X, A; B_n),

(iii) if for every $n \ge 1$

$$H^{n+1}(X,A;B_n)=0$$

then every cross section $s:A\to E$ can be extended to a total cross section $X\to E$. Let us consider two cross sections $s_o, s_1:X\to E$ such that $s_o\mid A=s_1\mid A$. If there is a homotopy

$$h: \overline{X}^{(n-1)} \times I \rightarrow E$$
 such that
$$h: s_0 \mid \overline{X}^{(n-1)} \simeq s_1 \mid \overline{X}^{(n-1)} \text{ rel } A$$

then we have a difference cochain $d^n(s_0, s_1, h) \in C^n(X, A; B_n)$.

Lemma 7. Under the above situation dn (so, si, h) is a cocycle.

Proof. By property 3

$$\delta d^{n}(s_{o}, s_{1}, h) = c^{n+1}(s_{1}) - c^{n+1}(s_{o}).$$

Since for a cross section $s: \overline{X}^{(n)} \to E$

s is extended to $\overline{X}^{(n+1)} \to E \Leftrightarrow c^{n+1}(s) = 0$, $c^{n+1}(s_1) = c^{n+1}(s_0) = 0$. Therefore $\delta d^n(s_0, s_1, h) = 0$.

Lemma 8. Under the above situation the homotopy h has an extension h^* : $\overline{X}^n \to E$ such that

$$h^*: s_o \mid \overline{X}^n \simeq s_1 \mid \overline{X}^n \text{ rel } A,$$

if and only if $d^n(s_0, s_1, h) = 0$.

Proof. Let us put

$$J = X \times I \qquad M = A \times I \cup X \times 0 \cup X \times 1$$
$$\bar{J}^{(n)} = M \cup J^{(n)} = (X \times 0) \cup (\bar{X}^{(n-1)} \times I) \cup (X \times 1).$$

Define a map $F: \overline{J}^{(n)} \to E$ by taking

$$F(x, t) = \begin{cases} s_0(x), & x \in X, \quad t = 0, \\ h(x, t), & x \in \overline{X}^{(n-1)}, \quad t \in I, \\ s_1(x), & x \in X, \quad t = 1. \end{cases}$$

Then F determines an obstruction cocycle $c^{n+1}(F)$ of the CW-complex J modulo M. Since there is the isomorphism

$$\psi: C^{n}(X, A; B_{n}) \longrightarrow C^{n+1}(J, M; B_{n})$$

$$\bigcup$$

 $d^{n}(s_{o} \mid \overline{X}^{(n)}, s_{1} \mid \overline{X}^{(n)}, h) \mapsto (-1)^{n+1} (c^{n+1}(F) - c^{n+1}(s_{o} \mid \overline{X}^{(n)}) \times 0 - c^{n+1}(s_{1} \mid \overline{X}^{(n)}) \times 1)$ ([2]), we have

$$\psi d^n(s_0 \mid \overline{X}^{(n)}, s_1 \mid \overline{X}^{(n)}, h) = (-1)^{n+1} c^{n+1}(F).$$

Since F has an extension $F': \overline{J}^{(n+1)} \to E \Leftrightarrow c^{(n+1)}(F) = 0$ and ψ is the isomomorphism

$$\exists h^* \Leftrightarrow c^{n+1}(F) = 0 \Leftrightarrow d^n(s_o \mid \overline{X}^{(n)}, s_1 \mid \overline{X}^{(n)}, h) = 0.1$$

By Lemma 7 the cocycle $d^n(s_o \mid \overline{X}^{(n)}, s_i \mid \overline{X}^{(n)}, h)$ represents an obstruction cohomology class

$$[d^{n}(s_{o} | \overline{X}^{n}, s_{1} | \overline{X}^{n}, h)] = \delta^{n}(s_{o}, s_{1}, h) \in H^{n}(X, A; B_{n})$$

Definition 9. In our category F_b for a fiber bundle $\pi: E \to X$, let $s: X \to E$ be a cross section. We set

$$\Omega = \{ \omega : \overline{X}^{(n+1)} \to E \mid s \text{ is a cross sections } \}$$

$$W = \{ \omega \in \Omega \mid s \mid A = \omega \mid A \}$$

and $\omega_o \in W$ such that $\omega_o = s \mid \overline{X}^{(n-1)}$. We define

$$R^n(X, A; s) = \pi_1(W, \omega_o)$$

which is a group.

The each element α of $R^n(X, A; s)$ is represented by a homotopy

$$h: \overline{X}^{n-1} \times I \rightarrow E$$
 such that
 $h: s \mid \overline{X}^{n-1} = s \mid \overline{X}^{n-1} \mid \text{rel } A.$

Therefore we obtain an obstruction cohomology class $d^n(s_o, s_o, h) \in H^n(X, A; B_n)$ which depends only on α . There is a homomorphism

$$\xi_n: R^n(X, A; S) \longrightarrow H^n(X, A; B_n)$$

$$\bigcup$$

$$\alpha \longmapsto \delta^n(s_0, s_0, h).$$

We also put $\mathcal{E}_n(\mathbb{R}^n(X, A; s)) = J_s^n = J_s^n(X, A; B_n)$ which is a subgroup of $H^n(X, A; B_n)$.

We shall denote the quotient group

by
$$Q_s^n = Q_s^n(X, A; B_n) = H^n(X, A; B_n)/J_s^n.$$

Definition 10. For a fiber bundle $\pi: E \to X \in F_b$ and two cross sections $s_o, s_1: X \to E$ with $s_o \mid A = s_1 \mid A$ we shall define the *n*-dimensional obstruction set

$$O^n(s_0, s_1) \subset H^n(X, A; B_n)$$

as follows, where A is a subcomplex of X. If

$$s_n \mid \overline{X}^{(n-1)} \neq s_1 \mid \overline{X}^{(n-1)} \text{ rel } A$$

then $O^n(s_0, s_1) = \emptyset$. Now suppose that there exists a homotopy $h: \overline{X}^{n-1} \times I \to E$ such that $h: s_0 \mid \overline{X}^{(n-1)} = s_1 \mid X^{(n-1)} \text{ rel } A$.

Then there is the cohomology class δ^n $(s_o, s_1, h) \in H^n(X, A; B_n)$ which is called an *n*-dimensional obstruction elements of s_o and s_1 .

We defeine

 $O^n(s_0, s_1) = \{ n \text{-dimensional obstruction element of } s_0, \text{ and } s_1 \}.$ In the above situation the following are easy to prove ([2]).

- (i) For two cross sections $s_o, s_1 : X \rightarrow E$ with $s_o \mid A = s_1 \mid A$ $s_o \mid \overline{X}^{(n)} = s_1 \mid \overline{X}^{(n)} \text{ rel } A \Leftrightarrow O^n(s_o, s_1) = J^n_{s_o}(X, A; B_n),$
- (ii) s_o and s_i are the same as above. If

$$s_0 \mid \overline{X}^{(n-1)} \cong s_1 \mid \overline{X}^{(n-1)} \quad \text{rel } A$$

then s_o and s_1 determine a unique element χ^n (s_o, s_1) of $Q^n_{s_o}(X, A; B_n)$. Moreover

$$s_o \mid \overline{X}^{(n)} \simeq s_1 \mid \overline{X}^{(n)} \text{ rel } A \Longrightarrow \chi^n(s_o, s_1) = 0.$$

For a fiber bundle $\pi: E \to X \in F_b$ and a fixed cross section $s: A \to E$, where A is a subcomplex of X. We put

$$S_s = \{ \omega : X \rightarrow E \mid \omega \text{ is a cross section with } s \mid A = \omega \mid A \}$$

Let θ be a given (n-1) -homotopy class relative to A of the maps S_s , $i \cdot e \cdot$, for s_o , $s \in \theta$

$$s_o \mid \overline{X}^{(n-1)} \simeq s_1 \mid \overline{X}^{(n-1)} \quad \text{rel } A, \quad s_o \mid A = s_1 \mid A = s \mid A.$$

Then θ determines a subgroup $J_{\theta}^{n}(X, A; B_{n})$ of $H^{n}(X, A; B_{n})$ and hence the quotient group

$$Q_{\theta}^{n}(X, A; B_{n}) = H^{n}(X, A; B_{n}) / J_{\theta}^{n}(X, A; B_{n})$$

(see Definition 9). We have to note that

$$s_o \mid \overline{X}^{(n-1)} \simeq s_1 \mid \overline{X}^{(n-1)}$$
 and $s_o \mid A = s_1 \mid A \Rightarrow J_{s_o}^n = J_{s_1}^n$.

For each $s_0 \in \theta$, by (ii) above every $s_1 \in \theta$ determines a characteristic element $\chi^n(s_0, s_1) \in Q_0^n(X, A; B_n)$. An element $\alpha \in Q_0^n(X, A; B_n)$ is said to be s_0 -admissible if there is a cross section $s_1 \in \theta$ such that $\chi^n(s_0, s_1) = \alpha$. We put

 $A_{s_0}^n$ = the set of all s_0 -admissible elements in $Q_s^n(X, A; B_n)$, which is called the s_0 -admissible set in $Q_s^n(X, A; B_n)$. By property 5, for each pair s_0 , $s_1 \in \theta$ it is clear that

$$A_{so}^{n} = \chi^{n}(s_{o}, s_{1}) + A_{s_{1}}^{n}$$

Lemma 11. The n-homotopy classes relative to A of S_s which are contained in θ are in one-to-one correspondence with the elements of $A_{s_0}^n$ for an arbitrary element s_0 of θ .

Proof. For $s_1 \in \theta$ $\chi^n(s_0, s_1) \in A_{s_0}^n$ as before, where $s_0 \in \theta$. $\chi^n(s_0, s_1)$ depends only on the *n*-homotopy class relative to A which contains s_1 because of that if $s_1 \mid X^m \cong_{s_2} \mid \overline{X}^m$ rel A and $s_1, s_2 \in \theta$ by (ii) above.

$$\chi^{n}(s_{o}, s_{1}) - \chi^{n}(s_{o}, s_{2}) = \chi^{n}(s_{1}, s_{2}) = 0$$
.

Therefore, $\tau: s_1 \longrightarrow \chi^n$ (s_o, s_1) defines a correspondence from the *n*-homotopy classes relative to A contained in θ to $A^n_{s_o}$. That τ is onto follows from the definition of $A^n_{s_o}$. Suppose $\chi^n(s_o, s_1) = \chi^n(s_o, s_2)$ then

$$\chi^n(s_1, s_2) = \chi^n(s_0, s_1) - \chi^n(s_0, s_2) = 0$$

which means that $s_1 \mid \overline{X}^{(n)} \cong s_2 \mid \overline{X}^{(n)}$ rel A by (ii) above.

§ 4. Main Theorems

In this section, we shall consider a fiber bundle $\pi: E \to X \in F_b$ and some properties of cross section $s: X \to E$

Lemma 12. For a given cross section $s_o: X \to E$, if dim $X \le n+1$ then for each cohomology class $u \in Q_o^n(X, A; B_n)$ there exists a cross section $s_1: X \to E$ such that

$$\chi(s_0, s_1) = u, s_0 \mid A = s_1 \mid A,$$

where A is a subcomplex of X.

Proof. Take $d \in C^n(X, A; B_n)$ with (d) = u. Then, by property 4 there exists an extension $s_1 : \overline{X}^{(n)} \to E$ of $s_o \mid \overline{X}^{(n-1)} : \overline{X}^{(n-1)} \to E$ such that $d^n(s_o \mid \overline{X}^{(n)}, s_1) = d$. By property 3. we have

$$c^{n+1}\left(s_{1}\right)-c^{n+1}\left(s_{0}\right)=\delta d\left(s_{0}\mid\overline{X}^{n}\mid s_{1}\right)=\delta d=0.$$

Since $s_0: X \rightarrow E$ is a cross section $c^{n+1}(s_0) = 0$, and thus $c^{n+1}(s_1) = 0$.

This means that s_i has an extension $\overline{X}^{(n+1)} = X \rightarrow E$, $i \cdot e \cdot$, s_1 is a cross section of the fiber bundle $\pi : E \rightarrow X$.

Theorem 13. Using notations an in § 3, we have

$$A_{s_0}^n = Q_0^n(X, A; B_n) = H^n(X, A; B_n)$$

if dim $X \le n+1$ and $s_0 \in \theta$.

Proof. By Lemma 12, we have for a fixed element $s_o \in \theta$ $\{ \chi^n (s_o, s_1) \mid s_o, s_1 \in \theta \} = Q_{\theta}^n (X, A; B_n) = H^n (X, A; B_n) / J_{\theta}^n (X, A; B_n).$ Since for $s_o, s_1 \in \theta$

$$J_{s_0}^n(X, A; B_n) = J_{s_1}^n(X, A; B_n)$$

we have

$$J_{\sigma}^{n}(X, A; B_{n}) = J_{\sigma_{\sigma}}^{n}(X, A; B_{n}).$$

As in the proof of Lemma 11, since $\chi^n(s_o, s_1)$ depends only on the *n*-homotopy class relative to A which contains s, we have

$$J_{s_o}^n(X, A; B_n) = \left\{ \chi^n(s_o, s_o) \right\}.$$

By (ii) of § 3 $X^n(s_0, s_0) = 0$ because of that $s_0: \overline{X}^{(n+1)} = X \rightarrow E$ is a cross section. Therefore, by the definion of $A_{s_0}^n$

$$A_{s_0}^n = Q_s^n(X, A; B_n) = H^n(X, A; B_n).$$

ACKNOWLEDGMENT

I am grateful to my academic advisor KeeAn Lee for his valuable comments in the making of this paper.

REFERENCES

- [1] R. Bott: On a Topological Obstruction to Integrability, Proc. Symp. Pure Math. 16, Amer Math. Soc. (1970) pp. 127~132.
- [2] S. T. Hu: Homotopy Theory, Academic Press (1959).
- [3] K. Lee: Foundations of Topology, Vol. 1: Hakmunsa, (1981).
- [4] S. MacLane: Homology, Springer Verlag (1975) Vol. 1, 2.
- [5] J. W. Milnor and J. D. Stasheff: Characteristic Classes, Princeton Univ. Press (1974).
- [6] E. H. Spanier: Algebraic Topology, McGraw-Hill Book Company (1966).

Jeonbug National University