• Title/Summary/Keyword: Mathematical problem solving

Search Result 1,028, Processing Time 0.018 seconds

The Sociodynamical Function of Meta-affect in Mathematical Problem-Solving Procedure (수학 문제해결 과정에 작용하는 메타정의의 사회역학적 기능)

  • Do, Joowon;Paik, Suckyoon
    • Education of Primary School Mathematics
    • /
    • v.20 no.1
    • /
    • pp.85-99
    • /
    • 2017
  • In order to improve mathematical problem-solving ability, there has been a need for research on practical application of meta-affect which is found to play an important role in problem-solving procedure. In this study, we analyzed the characteristics of the sociodynamical aspects of the meta-affective factor of the successful problem-solving procedure of small groups in the context of collaboration, which is known that it overcomes difficulties in research methods for meta-affect and activates positive meta-affect, and works effectively in actual problem-solving activities. For this purpose, meta-functional type of meta-affect and transact elements of collaboration were identified as the criterion for analysis. This study grasps the characteristics about sociodynamical function of meta-affect that results in successful problem solving by observing and analyzing the case of the transact structure associated with the meta-functional type of meta-affect appearing in actual episode unit of the collaborative mathematical problem-solving activity of elementary school students. The results of this study suggest that it provides practical implications for the implementation of teaching and learning methods of successful mathematical problem solving in the aspect of affective-sociodynamics.

Students' Cognitive Style and Mathematical Word Problem Solving

  • Almolhodaei, Hassan
    • Research in Mathematical Education
    • /
    • v.6 no.2
    • /
    • pp.171-182
    • /
    • 2002
  • Students approach mathematical problem solving in fundamentally different ways, particularly problems requiring conceptual understanding and complicated strategies such as mathematical word problems. The main objective of this study is to compare students' performance with different cognitive styles (Field-dependent vs. Field-independent) on mathematics problem solving, particularly, in word problems. A sample of 180 school girls (13-years-old) were tested on the Witkin's cognitive style (Group Embedded Figures Test) and two mathematics exams. Results obtained support the hypothesis that students with field-independent cognitive style achieved much better results than Field-dependent ones in word problems. The implications of these results on teaching and setting problems emphasizes that word problems and cognitive predictor variables (Field-dependent/Field- independent) could be challenging and rather distinctive factors on the part of school learners.

  • PDF

An Analysis on the Mathematical Communication and Attitudes in the Process of Solving Mathematical Project Problems (프로젝트형 문제 해결 과정에서 보이는 수학적 의사소통 활동과 수학적 태도 분석)

  • Choi Hye-Ryung;Paik Seok-Yoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.10 no.1
    • /
    • pp.43-66
    • /
    • 2006
  • This study was proposed to analyze mathematical communication activity and mathematical attitudes while students were solving project problem and to consider how the conclusions effects mathematics education. This study analyzed through qualitative research method. The questions for this study are following. First, how does the process of the mathematical communication activity proceed during solving project problem in a small group? Second, what reactions can be shown on mathematical attitudes during solving project problem in a small group? Four project problems sampled from pilot study in order to examine these questions were applied on two small groups consisting of four 5th grade students It was recorded while each group was finding out the solution of the given problems. Afterward, consequences were analyzed according to each question after all contents were noted. Consequently, conclusions can be derived as follows. First, it was shown that each student used different elements of contents in mathematical communication activity. Second, during mathematical communication activity, most students preferred common languages to mathematical ones. Third, it was found that each student has their own mathematical attitude. Fourth, Students were more interested in the game project problem and the practical using project problem than others.

  • PDF

A Study on Student's Processes of Problem Solving Using Open-ended Geometric Problems in the Middle School (중학교 기하단원의 개방형문제에서 학생의 문제해결과정의 사고 특성에 관한 연구)

  • ChoiKoh, Sang-Sook;Noh, Ji-Yeon
    • Journal of the Korean School Mathematics Society
    • /
    • v.10 no.3
    • /
    • pp.303-322
    • /
    • 2007
  • This study is to investigate student's processes of problem solving using open-ended Geometric problems to understand student's thinking and behavior. One 8th grader participated in performing her learning in 5 lessons for June in 2006. The result of the study was documented according to Polya's four problem solving stages as follows: First, the student tended to neglect the stage of "understanding" a problem in the beginning. However, the student was observed to make it simplify and relate to what she had teamed previously Second, "devising a plan" was not simply done. She attempted to solve the open-ended problems with more various ways and became to have the metacognitive knowledge, leading her to think back and correct her errors of solving a problem. Third, in process of "carrying out" the plan she controled her solving a problem to become a better solver based on failure of solving a problem. Fourth, she recognized the necessity of "looking back" stage through the open ended problems which led her to apply and generalize mathematical problems to the real life. In conclusion, it was found that the student enjoyed her solving with enthusiasm, building mathematical belief systems with challenging spirit and developing mathematical power.

  • PDF

Analysis of characteristics from meta-affect viewpoint on problem-solving activities of mathematically gifted children (수학 영재아의 문제해결 활동에 대한 메타정의적 관점에서의 특성 분석)

  • Do, Joowon;Paik, Suckyoon
    • The Mathematical Education
    • /
    • v.58 no.4
    • /
    • pp.519-530
    • /
    • 2019
  • According to previous studies, meta-affect based on the interaction between cognitive and affective elements in mathematics learning activities maintains a close mechanical relationship with the learner's mathematical ability in a similar way to meta-cognition. In this study, in order to grasp these characteristics phenomenologically, small group problem-solving cases of 5th grade elementary mathematically gifted children were analyzed from a meta-affective perspective. As a result, the two types of problem-solving cases of mathematically gifted children were relatively frequent in the types of meta-affect in which cognitive element related to the cognitive characteristics of mathematically gifted children appeared first. Meta-affects were actively acted as the meta-function of evaluation and attitude types. In the case of successful problem-solving, it was largely biased by the meta-function of evaluation type. In the case of unsuccessful problem-solving, it was largely biased by the meta-function of the monitoring type. It could be seen that the cognitive and affective characteristics of mathematically gifted children appear in problem solving activities through meta-affective activities. In particular, it was found that the affective competence of the problem solver acted on problem-solving activities by meta-affect in the form of emotion or attitude. The meta-affecive characteristics of mathematically gifted children and their working principles will provide implications in terms of emotions and attitudes related to mathematics learning.

Effects of Teaching with Problem Posing on Mathematical Problem Solving Ability and Attitude in Elementary School Mathematics (초등 수학에서 문제 만들기를 적용한 수업이 수학적 문제 해결력 및 태도에 미치는 효과)

  • Choi Yun Seok;Bae Jong-Soo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.8 no.1
    • /
    • pp.23-43
    • /
    • 2004
  • The purposes of this study are, by referring to various previous studies on problem posing, to re-construct problem posing steps and a variety of problem posing learning materials with a problem posing teaching-learning model, which are practically useful in math class; then, by applying them to 4-Ga step math teaming, to examine whether this problem posing teaching-learning model has positive effects on the students' problem solving ability and mathematical attitude. The experimental process consisted of the newly designed problem posing teaching-learning curriculum taught to the experimental group, and a general teaching-learning curriculum taught to the comparative group. The study results of this experiment are as follows: First, compared to the comparative group, the experimental group in which the teaching-teaming activity with problem posing was taught showed a significant improvement in problem solving ability. Second, the experimental group in which the teaching-learning activity with problem posing was taught showed a positive change in mathematical attitude.

  • PDF

The Effects of the Mathematical Problem Generating Program on Problem Solving Ability and Learning Attitude (수학 문제만들기 활동이 문제해결력과 학습 태도에 미치는 효과)

  • Jung, Sung-Gun;Park, Man-Goo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.2
    • /
    • pp.315-335
    • /
    • 2010
  • The goal of this research was to study the effects of the Mathematical Problem Generating Program on problem solving ability and learning attitude. The experiment was carried out between two classes. One class was applied with the experimental program (treatment group), and the other continued with normal teaching and learning methods (comparative group). In this study, two 5th grade elementary classes participated in Seoul city. In this study, the students were tested their problem solving abilities by the IPSP test and learning attitude by the Korean Education Development Institute (KEDI) before and after use of the program. The collected results were t-tested to find any meaningful changes. The results showed the followings. First, use of the mathematical generating program showed meaningful progressive results in problem solving ability. Second, the students that used the program showed positive results in learning attitude. In conclusion, learning mathematics using the problem generating method helps students deeper understand and solve complex problems. In addition, problem solving abilities can be improved and the attitude towards mathematics can be changed while students are using an active and positive approach in problem solving processes.

  • PDF

Analysis of Effect of Learning to Solve Word Problems through a Structure-Representation Instruction. (문장제 해결에서 구조-표현을 강조한 학습의 교수학적 효과 분석)

  • 이종희;김부미
    • School Mathematics
    • /
    • v.5 no.3
    • /
    • pp.361-384
    • /
    • 2003
  • The purpose of this study was to investigate students' problem solving process based on the model of IDEAL if they learn to solve word problems of simultaneous linear equations through structure-representation instruction. The problem solving model of IDEAL is followed by stages; identifying problems(I), defining problems(D), exploring alternative approaches(E), acting on a plan(A). 160 second-grade students of middle schools participated in a study was classified into those of (a) a control group receiving no explicit instruction of structure-representation in word problem solving, and (b) a group receiving structure-representation instruction followed by IDEAL. As a result of this study, a structure-representation instruction improved word-problem solving performance and the students taught by the structure-representation approach discriminate more sharply equivalent problem, isomorphic problem and similar problem than the students of a control group. Also, students of the group instructed by structure-representation approach have less errors in understanding contexts and using data, in transferring mathematical symbol from internal learning relation of word problem and in setting up an equation than the students of a control group. Especially, this study shows that the model of direct transformation and the model of structure-schema in students' problem solving process of I and D stages.

  • PDF

Math Creative Problem Solving Ability Test for Identification of the Mathematically Gifted

  • Cho Seok-Hee;Hwang Dong-Jou
    • Research in Mathematical Education
    • /
    • v.10 no.1 s.25
    • /
    • pp.55-70
    • /
    • 2006
  • The purpose of this study was to develop math creative problem solving test in order to identify the mathematically gifted on the basis of their math creative problem solving ability and evaluate the goodness of the test in terms of its reliability and validity of measuring creativity in math problem solving on the basis of fluency in producing valid solutions. Ten open math problems were developed requiring math thinking abilities such as intuitive insight, organization of information, inductive and deductive reasoning, generalization and application, and reflective thinking. The 10 open math test items were administered to 2,029 Grade 5 students who were recommended by their teachers as candidates for gifted education programs. Fluency, the number of valid solutions, in each problem was scored by math teachers. Their responses were analyzed by BIGSTEPTS based on Rasch's 1-parameter item-response model. The item analyses revealed that the problems were good in reliability, validity, difficulty, and discrimination power even when creativity was scored with the single criteria of fluency. This also confirmed that the open problems which are less-defined, less-structured and non-entrenched were good in measuring math creativity of the candidates for math gifted education programs. In addition, it discriminated applicants for two different gifted educational institutions and between male and female students as well.

  • PDF

The Effect of Essay Writing-Centered Mathematics Teaching on Problem Solving and Mathematical Disposition (서술형 수학 쓰기 수업이 초등학생의 문제해결 및 수학적 성향에 미치는 효과)

  • Kim, Hyosun;Oh, Youngyoul
    • Communications of Mathematical Education
    • /
    • v.28 no.1
    • /
    • pp.131-154
    • /
    • 2014
  • The purpose of this study was to examine the effect of essay writing-centered mathematics instruction on problem solving and mathematical deposition in the elementary school. For the present study, two 6th grade classes with equivalent achievement in terms of problem solving and mathematical disposition based on the pretest. A total of 15 mathematics lessons focused on writing activities were administered to the experiment group for two months, while the textbook-based traditional lessons were given to the comparison group. Both quantitative and qualitative methods were adopted to analyze the data. The results of the present study showed that essay writing-centered mathematics teaching is statistically superior that the textbook-based mathematics teaching with respect to students' problem solving and mathematical disposition. In addition, it was evidenced that essay writing-centered mathematics instruction makes an influence on students' perceptions toward essay-based assessment in a positive way.