• Title/Summary/Keyword: Mathematical equation

Search Result 2,600, Processing Time 0.025 seconds

On polytopes and graphs (Polytope와 graph에 관하여)

  • Kim Yeon Sik
    • The Mathematical Education
    • /
    • v.10 no.2
    • /
    • pp.4-8
    • /
    • 1972
  • We consider the class (equation omitted) of all k-degenerate graphs, for k a non-negative integer. The class (equation omitted) and (equation omitted) are exactly the classes of totally disconnected graphs and of forests, respectively; the classes (equation omitted) and (equation omitted) properly contain all outerplanar and planar graphs respectively. The advantage of this view point is that many of the known results for chromatic number and point arboricity have natural extensions, for all larger values of k. The purpose of this note is to show that a graph G is (P$^3$)-realizable if G is planar and 3-degenerate.

  • PDF

On the hyers-ulam-rassias stability of the equation $f( -

  • Jung, Soon-Mo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.513-519
    • /
    • 1996
  • The stability problem of functional equations has been originally raised by S. M. Ulam. In 1940, he posed the following problem: Give conditions in order for a linear mapping near an approximately additive mapping to exist (see [9]).

  • PDF

STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C*-ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION

  • Eghbali, Nasrin;Hazrati, Somayeh
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.101-113
    • /
    • 2016
  • In this article, we considered the stability of the following (${\alpha}$, ${\beta}$, ${\gamma}$)-derivation $${\alpha}D[x,y]={\beta}[D(x),y]+{\gamma}[x,D(y)]$$ and homomorphisms associated to the quadratic type functional equation $$f(kx+y)+f(kx+{\sigma}(y))=2kg(x)+2g(y),\;x,y{\in}A$$, where ${\sigma}$ is an involution of the Lie $C^*$-algebra A and k is a fixed positive integer. The Hyers-Ulam stability on unbounded domains is also studied. Applications of the results for the asymptotic behavior of the generalized quadratic functional equation are provided.

THE FUNDAMENTAL SOLUTION OF THE SPACE-TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • HUANG F.;LIU F.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.339-350
    • /
    • 2005
  • A space-time fractional advection-dispersion equation (ADE) is a generalization of the classical ADE in which the first-order time derivative is replaced with Caputo derivative of order $\alpha{\in}(0,1]$, and the second-order space derivative is replaced with a Riesz-Feller derivative of order $\beta{\in}0,2]$. We derive the solution of its Cauchy problem in terms of the Green functions and the representations of the Green function by applying its Fourier-Laplace transforms. The Green function also can be interpreted as a spatial probability density function (pdf) evolving in time. We do the same on another kind of space-time fractional advection-dispersion equation whose space and time derivatives both replacing with Caputo derivatives.

Mathematical Thinking and Developing Mathematical Structure

  • Cheng, Chun Chor Litwin
    • Research in Mathematical Education
    • /
    • v.14 no.1
    • /
    • pp.33-50
    • /
    • 2010
  • The mathematical thinking which transforms important mathematical content and developed into mathematical structure is a vital process in building up mathematical ability as mathematical knowledge based on structure. Such process based on students' recognition of mathematical concept. Developing mathematical thinking into mathematical structure happens when different cognitive units are connected and compressed to form schema of solution, which could happen through some guided problems. The effort of arithmetic approach in problem solving did not necessarily provide students the structure schema of solution. The using of equation to solve the problem is based on the schema of building equation, and is not necessary recognizing the structure of the solution, as the recognition of structure may be lost in the process of simplification of algebraic expressions, leaving only the final numeric answer of the problem.

ON A CERTAIN CLASS OF INTEGRAL-FUNCTIONAL EQUATIONS

  • FAGHIH AHMADI, M.
    • Honam Mathematical Journal
    • /
    • v.28 no.3
    • /
    • pp.395-398
    • /
    • 2006
  • In this note, for any given positive integer n, we determine all the continuous solutions f : R ${\rightarrow}$ R of the integral-functional equation $f^n(x)=n_{_o}{^x}f(t)dt$.

  • PDF