• Title/Summary/Keyword: Mathematical Uniqueness

Search Result 424, Processing Time 0.021 seconds

NEGATIVELY BOUNDED SOLUTIONS FOR A PARABOLIC PARTIAL DIFFERENTIAL EQUATION

  • FANG ZHONG BO;KWAK, MIN-KYU
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.829-836
    • /
    • 2005
  • In this note, we introduce a new proof of the unique-ness and existence of a negatively bounded solution for a parabolic partial differential equation. The uniqueness in particular implies the finiteness of the Fourier spanning dimension of the global attractor and the existence allows a construction of an inertial manifold.

RESULTS ON MEROMORPHIC FUNCTIONS SHARING THREE VALUES WITH THEIR DIFFERENCE OPERATORS

  • LI, XIAO-MIN;YI, HONG-XUN;KANG, CONG-YUN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1401-1422
    • /
    • 2015
  • Under the restriction of finite order, we prove two uniqueness theorems of nonconstant meromorphic functions sharing three values with their difference operators, which are counterparts of Theorem 2.1 in [6] for a finite-order meromorphic function and its shift operator.

Lp SOLUTIONS FOR GENERAL TIME INTERVAL MULTIDIMENSIONAL BSDES WITH WEAK MONOTONICITY AND GENERAL GROWTH GENERATORS

  • Dong, Yongpeng;Fan, Shengjun
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.985-999
    • /
    • 2018
  • This paper is devoted to the existence and uniqueness of $L^p$ (p > 1) solutions for general time interval multidimensional backward stochastic differential equations (BSDEs for short), where the generator g satisfies a ($p{\wedge}2$)-order weak monotonicity condition in y and a Lipschitz continuity condition in z, both non-uniformly in t. The corresponding stability theorem and comparison theorem are also proved.

A FOURTH-ORDER ACCURATE FINITE DIFFERENCE SCHEME FOR THE EXTENDED-FISHER-KOLMOGOROV EQUATION

  • Kadri, Tlili;Omrani, Khaled
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.297-310
    • /
    • 2018
  • In this paper, a nonlinear high-order difference scheme is proposed to solve the Extended-Fisher-Kolmogorov equation. The existence, uniqueness of difference solution and priori estimates are obtained. Furthermore, the convergence of the difference scheme is proved by utilizing the energy method to be of fourth-order in space and second-order in time in the discrete $L^{\infty}-norm$. Some numerical examples are given in order to validate the theoretical results.

MEROMORPHIC FUNCTIONS PARTIALLY SHARED VALUES WITH THEIR SHIFTS

  • Lin, Weichuan;Lin, Xiuqing;Wu, Aidi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.469-478
    • /
    • 2018
  • We prove some uniqueness theorems of nonconstant meromorphic functions partially sharing values with their shifts. As an application, we obtain a sufficient condition on periodic meromorphic functions. Moreover, some examples are given to illustrate that the conditions are sharp and necessary.

A SYSTEM OF FIRST-ORDER IMPULSIVE FUZZY DIFFERENTIAL EQUATIONS

  • Lan, Heng-You
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.111-123
    • /
    • 2008
  • In this paper, we introduce a new system of first-order impulsive fuzzy differential equations. By using Banach fixed point theorem, we obtain some new existence and uniqueness theorems of solutions for this system of first-order impulsive fuzzy differential equations in the metric space of normal fuzzy convex sets with distance given by maximum of the Hausdorff distance between level sets.

  • PDF

UNIQUENESS AND MULTIPLICITY OF SOLUTIONS FOR THE NONLINEAR ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.139-146
    • /
    • 2008
  • We investigate the uniqueness and multiplicity of solutions for the nonlinear elliptic system with Dirichlet boundary condition $$\{-{\Delta}u+g_1(u,v)=f_1(x){\text{ in }}{\Omega},\\-{\Delta}v+g_2(u,v)=f_2(x){\text{ in }}{\Omega},$$ where ${\Omega}$ is a bounded set in $R^n$ with smooth boundary ${\partial}{\Omega}$. Here $g_1$, $g_2$ are nonlinear functions of u, v and $f_1$, $f_2$ are source terms.

  • PDF

RESULTS ON MEROMORPHIC FUNCTIONS SHARING THREE VALUES CM IN SOME ANGULAR DOMAINS

  • Li, Xiao-Min;Liu, Xue-Feng;Yi, Hong-Xun
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.467-481
    • /
    • 2016
  • We study the uniqueness question of transcendental meromorphic functions that share three values CM in some angular domains instead of the whole complex plane. The results in this paper extend the corresponding results in Zheng [13, 14] and Yi [12]. Some examples are given to show that the results in this paper, in a sense, are the best possible.

UNIQUENESS OF SOLUTIONS FOR THE BOUNDARY VALUE PROBLEM OF CERTAIN NONLINEAR ELLIPTIC OPERATORS VIA p-HARMONIC BOUNDARY

  • Lee, Yong Hah
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.1025-1031
    • /
    • 2017
  • We prove the uniqueness of solutions for the boundary value problem of certain nonlinear elliptic operators in the setting: Given any continuous function f on the p-harmonic boundary of a complete Riemannian manifold, there exists a unique solution of certain nonlinear elliptic operators, which is a limit of a sequence of solutions of the operators with finite energy in the sense of supremum norm, on the manifold taking the same boundary value at each p-harmonic boundary as that of f.