Acknowledgement
Supported by : Central Universities
References
- C. Bender and M. Kohlmann, BSDEs with stochastic Lipschitz condition, http://cofe.uni-konstanz.de/Papers/dp0008.pdf, 2000.
-
P. Briand, B. Delyon, Y. Hu, E. Pardoux, and L. Stoica,
$L^p$ solutions of backward stochastic differential equations, Stochastic Process. Appl. 108 (2003), no. 1, 109-129. https://doi.org/10.1016/S0304-4149(03)00089-9 - P. Briand and R. Elie, A simple constructive approach to quadratic BSDEs with or without delay, Stochastic Process. Appl. 123 (2013), no. 8, 2921-2939. https://doi.org/10.1016/j.spa.2013.02.013
- P. Briand and Y. Hu, Quadratic BSDEs with convex generators and unbounded terminal conditions, Probab. Theory Related Fields 141 (2008), no. 3-4, 543-567. https://doi.org/10.1007/s00440-007-0093-y
- Z. J. Chen, Existence of solutions to backward stochastic differential equations with stopping times, Kexue Tongbao (Chinese) 42 (1997), no. 22, 2379-2382.
- Z. Chen and B. Wang, Infinite time interval BSDEs and the convergence of g-martingales, J. Aust. Math. Soc. Ser. A 69 (2000), no. 2, 187-211. https://doi.org/10.1017/S1446788700002172
- F. Delbaen, Y. Hu, and A. Richou, On the uniqueness of solutions to quadratic BSDEs with convex generators and unbounded terminal conditions, Ann. Inst. Henri Poincare Probab. Stat. 47 (2011), no. 2, 559-574. https://doi.org/10.1214/10-AIHP372
-
S. Fan,
$L^p$ solutions of multidimensional BSDEs with weak monotonicity and general growth generators, J. Math. Anal. Appl. 432 (2015), no. 1, 156-178. https://doi.org/10.1016/j.jmaa.2015.06.049 -
S. Fan, Bounded solutions,
$L^p\;(p > 1)$ solutions and$L^1$ solutions for one dimensional BSDEs under general assumptions, Stochastic Process. Appl. 126 (2016), no. 5, 1511-1552. https://doi.org/10.1016/j.spa.2015.11.012 - S. Fan and L. Jiang, Uniqueness result for the BSDE whose generator is monotonic in y and uniformly continuous in z, C. R. Math. Acad. Sci. Paris 348 (2010), no. 1-2, 89-92. https://doi.org/10.1016/j.crma.2009.10.023
-
S. Fan,
$L^p$ solutions of finite and infinite time interval BSDEs with non-Lipschitz coefficients, Stochastics 84 (2012), no. 4, 487-506. https://doi.org/10.1080/17442508.2011.615933 - S. Fan, L. Jiang, and D. Tian, One-dimensional BSDEs with finite and infinite time horizons, Stochastic Process. Appl. 121 (2011), no. 3, 427-440. https://doi.org/10.1016/j.spa.2010.11.008
- Y. Hu and S. Tang, Multi-dimensional backward stochastic differential equations of diagonally quadratic generators, Stochastic Process. Appl. 126 (2016), no. 4, 1066-1086. https://doi.org/10.1016/j.spa.2015.10.011
- M. Kobylanski, Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab. 28 (2000), no. 2, 558-602. https://doi.org/10.1214/aop/1019160253
- J.-F. Le Gall, Mouvement brownien, martingales et calcul stochastique, Mathematiques & Applications (Berlin), 71, Springer, Heidelberg, 2013.
- J. P. Lepeltier and J. San Martin, Backward stochastic differential equations with continuous coefficient, Statist. Probab. Lett. 32 (1997), no. 4, 425-430. https://doi.org/10.1016/S0167-7152(96)00103-4
- J. P. Lepeltier, Existence for BSDE with superlinear-quadratic coefficient, Stochastics Stochastics Rep. 63 (1998), no. 3-4, 227-240. https://doi.org/10.1080/17442509808834149
-
Y. Liu, D. Li, and S. Fan,
$L^{p}$ (p > 1) solutions of BSDEs with generators satisfying some non-uniform conditions in t and${\omega}$ , arXiv: 1603.00259v1 [math. PR] 1 Mar 2016. - Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett. 14 (1990), no. 1, 55-61. https://doi.org/10.1016/0167-6911(90)90082-6
- L. Xiao and S. Fan, General time interval BSDEs under the weak monotonicity condition and nonlinear decomposition for general g-supermartingales, Stochastics 89 (2017), no. 5, 786-816. https://doi.org/10.1080/17442508.2017.1282956