Table 1. The maximum norm errors and spatial convergenceorder with ?xed time step k = 1/10000.
Table 2. The maximum norm errors and temporal conver-gence order with ?xed space step h = 1/500.
References
- G. Ahlers and D. S. Cannell, Vortex-front propagation in rotating Couette-Taylor Tow, Phys. Rev. Lett. 50 (1983), 1583-1586. https://doi.org/10.1103/PhysRevLett.50.1583
- G. D. Akrivis, Finite difference discretization of Kuramoto-Sivashinsky, Numer. Math. 63 (1992), no. 1, 1-11. https://doi.org/10.1007/BF01385844
- D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math. 30 (1978), no. 1, 33-76. https://doi.org/10.1016/0001-8708(78)90130-5
- F. E. Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, Proc. Sympos. Appl. Math., Vol. XVII, pp. 24-49 Amer. Math. Soc., Providence, R.I., 1965.
- P. Coullet, C. Elphick, and D. Repaux, Nature of spatial chaos, Phys. Rev. Lett. 58 (1987), no. 5, 431-434. https://doi.org/10.1103/PhysRevLett.58.431
- G. T. Dee, W. van Saarloos, Bistable systems with propagating fronts leading to pattern formation, Phys. Rev. Lett. 60 (1988), 2641-2644. https://doi.org/10.1103/PhysRevLett.60.2641
- M. Dehghan, A. Mohebbi, and Z. Asgari, Fourth-order compact solution of the nonlinear Klein-Gordon equation, Numer. Algorithms 52 (2009), no. 4, 523-540. https://doi.org/10.1007/s11075-009-9296-x
- M. Dehghan and A. Taleei, A compact split-step finite difference method for solving the nonlinear Schrodinger equations with constant and variable coecients, Comput. Phys. Commu. 181 (2010), no. 1, 43-51. https://doi.org/10.1016/j.cpc.2009.08.015
- D. He, Exact solitary solution and a three-level linearly implicit conservative finite difference method for the generalized Rosenau-Kawahara-RLW equation with generalized Novikov type perturbation, Nonlinear Dynam. 85 (2016), no. 1, 479-498. https://doi.org/10.1007/s11071-016-2700-x
- D. He and K. Pan, A linearly implicit conservative difference scheme for the generalized Rosenau-Kawahara-RLW equation, Appl. Math. Comput. 271 (2015), 323-336.
-
R. M. Hornreich, M. Luban, and S. Shtrikman, Critical behaviour at the onset of k-space instability at the
$\lambda$ line, Phys. Rev. Lett. 35 (1975), 1678-1681. https://doi.org/10.1103/PhysRevLett.35.1678 - N. Khiari, T. Achouri, M. L. Ben Mohamed, and K. Omrani, Finite difference approximate solutions for the Cahn-Hilliard equation, Numerical Methods for Partial Differen-tial Eqs. 23 (2007), no. 2, 437-455. https://doi.org/10.1002/num.20189
- N. Khiari and K. Omrani, Finite difference discretization of the extended Fisher Kolmogorov equation in two dimensions, Comput. Math. Appl. 62 (2011), 4151-4160. https://doi.org/10.1016/j.camwa.2011.09.065
- A. Mohebbi and M. Dehghan, High-order solution of one-dimensional Sine-Gordon equation using compact finite difference and DIRKN methods, Math. Comput. Mod-elling 51 (2010), no. 5-6, 537-549. https://doi.org/10.1016/j.mcm.2009.11.015
- A. Mohebbi and M. Dehghan, High-order compact solution of the one-dimensional heat and advectiondi ffusion equations, Appl. Math. Model. 34 (2010), no. 10, 3071-3084. https://doi.org/10.1016/j.apm.2010.01.013
- K. Omrani, A second order splitting method for a finite difference scheme for the Sivashinsky equation, Appl. Math. Lett. 16 (2003), no. 3, 441-445. https://doi.org/10.1016/S0893-9659(03)80070-8
- K. Omrani, Numerical methods and error analysis for the nonlinear Sivashinsky equation, Appl. Math. Comput. 189 (2007), no. 1, 949-962. https://doi.org/10.1016/j.amc.2006.11.169
- K. Omrani, F. Abidi, T. Achouri, and N. Khiari, A new conservative finite difference scheme for the Rosenau equation, Appl. Math. Comput. 201 (2008), no. 1-2, 35-43. https://doi.org/10.1016/j.amc.2007.11.039
- X. Pan, T.Wang, L. Zhang, and B. Guo, On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation, Appl. Math. Model. 36 (2012), no. 8, 3371-3378. https://doi.org/10.1016/j.apm.2011.08.022
- X. Pan and L. Zhang, Numerical simulation for general Rosenau-RLW equation: an average linearized conservative scheme, Math. Probl. Eng. 2012 (2012), Article ID 517818, 15 pages.
-
L. J. Tracius Doss and A. P. Nandini, An
$H^1$ -Galerkin Mixed Finite Element Method For The Extended Fisher-Kolmogorov Equation, Numer. Anal. Model. Ser. B Comput. Inform. 3, 4 (2012), 460-485. - T. Wang, Convergence of an eighth-order compact difference scheme for the nonlinear Schrodinger equation, Adv. Numer. Anal. 2012 (2012), Article ID 913429, 24 pp.
- T. Wang, Optimal point-wise error estimate of a compact difference scheme for the Klein-Gordon-Schrodinger equation, J. Math. Anal. Appl. 412 (2014), no. 1, 155-167. https://doi.org/10.1016/j.jmaa.2013.10.038
- T. Wang, B. Guo, and Q. Xu, Fourth-order compact and energy conservative difference schemes for the nonlinear Schrodinger equation in two dimensions, J. Comput. Phys. 243 (2013), 382-399. https://doi.org/10.1016/j.jcp.2013.03.007
- T. Wang and Y. Jiang, Point-wise errors of two conservative difference schemes for the Klein-Gordon-Schrodinger equation, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), no. 12, 4565-4575. https://doi.org/10.1016/j.cnsns.2012.03.032
- Y. Zhou, Application of Discrete Functional Analysis to the Finite Difference Methods, International Academic Publishers, Bijing, 1990.
- G. Zhu, Experiments on director waves in nematic liquid crystals, Phys. Rev. Lett. 49 (1982), 1332-1335. https://doi.org/10.1103/PhysRevLett.49.1332