• Title/Summary/Keyword: Mathematical Thinking Ability

Search Result 183, Processing Time 0.02 seconds

Development and Application of Statistical Programs Based on Data and Artificial Intelligence Prediction Model to Improve Statistical Literacy of Elementary School Students (초등학생의 통계적 소양 신장을 위한 데이터와 인공지능 예측모델 기반의 통계프로그램 개발 및 적용)

  • Kim, Yunha;Chang, Hyewon
    • Communications of Mathematical Education
    • /
    • v.37 no.4
    • /
    • pp.717-736
    • /
    • 2023
  • The purpose of this study is to develop a statistical program using data and artificial intelligence prediction models and apply it to one class in the sixth grade of elementary school to see if it is effective in improving students' statistical literacy. Based on the analysis of problems in today's elementary school statistical education, a total of 15 sessions of the program was developed to encourage elementary students to experience the entire process of statistical problem solving and to make correct predictions by incorporating data, the core in the era of the Fourth Industrial Revolution into AI education. The biggest features of this program are the recognition of the importance of data, which are the key elements of artificial intelligence education, and the collection and analysis activities that take into account context using real-life data provided by public data platforms. In addition, since it consists of activities to predict the future based on data by using engineering tools such as entry and easy statistics, and creating an artificial intelligence prediction model, it is composed of a program focused on the ability to develop communication skills, information processing capabilities, and critical thinking skills. As a result of applying this program, not only did the program positively affect the statistical literacy of elementary school students, but we also observed students' interest, critical inquiry, and mathematical communication in the entire process of statistical problem solving.

Analysis of the Algebraic Generalization on the Mathematically Gifted Elementary School Students' Process of Solving a Line Peg Puzzle (초등수학영재들이 페그퍼즐 과제에서 보여주는 대수적 일반화 과정 분석)

  • Song, Sang-Hun;Yim, Jae-Hoon;Chong, Yeong-Ok;Kwon, Seok-Il;Kim, Ji-Won
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.2
    • /
    • pp.163-177
    • /
    • 2007
  • Studies on mathematically gifted students have been conducted following Krutetskii. There still exists a necessity for a more detailed research on how these students' mathematical competence is actually displayed during the problem solving process. In this study, it was attempted to analyse the algebraic thinking process in the problem solving a peg puzzle in which 4 mathematically gifted students, who belong to the upper 0.01% group in their grade of elementary school in Korea. They solved and generalized the straight line peg puzzle. Mathematically gifted elementary school students had the tendency to find a general structure using generic examples rather than find inductive rules. They did not have difficulty in expressing their thoughts in letter expressions and in expressing their answers in written language; and though they could estimate general patterns while performing generalization of two factors, it was revealed that not all of them can solve the general formula of two factors. In addition, in the process of discovering a general pattern, it was confirmed that they prefer using diagrams to manipulating concrete objects or using tables. But as to whether or not they verify their generalization results using generalized concrete cases, individual difference was found. From this fact it was confirmed that repeated experiments, on the relationship between a child's generalization ability and his/her behavioral pattern that verifies his/her generalization result through application to a concrete case, are necessary.

  • PDF

An Analysis on the Responses and the Behavioral Characteristics between Mathematically Promising Students and Normal Students in Solving Open-ended Mathematical Problems (수학 영재교육 대상 학생과 일반 학생의 개방형 문제해결 전략 및 행동 특성 분석)

  • Kim, Eun-Hye;Park, Man-Goo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.1
    • /
    • pp.19-38
    • /
    • 2011
  • The purpose of this study was to analyze the responses and the behavioral characteristics between mathematically promising students and normal students in solving open-ended problems. For this study, 55 mathematically promising students were selected from the Science Education Institute for the Gifted at Seoul National University of Education as well as 100 normal students from three 6th grade classes of a regular elementary school. The students were given 50 minutes to complete a written test consisting of five open-ended problems. A post-test interview was also conducted and added to the results of the written test. The conclusions of this study were summarized as follows: First, analysis and grouping problems are the most suitable in an open-ended problem study to stimulate the creativity of mathematically promising students. Second, open-ended problems are helpful for mathematically promising students' generative learning. The mathematically promising students had a tendency to find a variety of creative methods when solving open-ended problems. Third, mathematically promising students need to improve their ability to make-up new conditions and change the conditions to solve the problems. Fourth, various topics and subjects can be integrated into the classes for mathematically promising students. Fifth, the quality of students' former education and its effect on their ability to solve open-ended problems must be taken into consideration. Finally, a creative thinking class can be introduce to the general class. A number of normal students had creativity score similar to those of the mathematically promising students, suggesting that the introduction of a more challenging mathematics curriculum similar to that of the mathematically promising students into the general curriculum may be needed and possible.

  • PDF

A Study of Secondary Mathematics Materials at a Gifted Education Center in Science Attached to a University Using Network Text Analysis (네트워크 텍스트 분석을 활용한 대학부설 과학영재교육원의 중등수학 강의교재 분석)

  • Kim, Sungyeun;Lee, Seonyoung;Shin, Jongho;Choi, Won
    • Communications of Mathematical Education
    • /
    • v.29 no.3
    • /
    • pp.465-489
    • /
    • 2015
  • The purpose of this study is to suggest implications for the development and revision of future teaching materials for mathematically gifted students by using network text analysis of secondary mathematics materials. Subjects of the analysis were learning goals of 110 teaching materials in a gifted education center in science attached to a university from 2002 to 2014. In analysing the frequency of the texts that appeared in the learning goals, key words were selected. A co-occurrence matrix of the key words was established, and a basic information of network, centrality, centralization, component, and k-core were deducted. For the analysis, KrKwic, KrTitle, and NetMiner4.0 programs were used, respectively. The results of this study were as follows. First, there was a pivot of the network formed with core hubs including 'diversity', 'understanding' 'concept' 'method', 'application', 'connection' 'problem solving', 'basic', 'real life', and 'thinking ability' in the whole network from 2002 to 2014. In addition, knowledge aspects were well reflected in teaching materials based on the centralization analysis. Second, network text analysis based on the three periods of the Mater Plan for the promotion of gifted education was conducted. As a result, a network was built up with 'understanding', and there were strong ties among 'question', 'answer', and 'problem solving' regardless of the periods. On the contrary, the centrality analysis showed that 'communication', 'discovery', and 'proof' only appeared in the first, second, and third period of Master Plan, respectively. Therefore, the results of this study suggest that affective aspects and activities with high cognitive process should be accompanied, and learning goals' mannerism and ahistoricism be prevented in developing and revising teaching materials.

A Research on the Real State of Story-telling Mathematics Class of Middle School (스토리텔링을 적용한 중학교 수학 수업에 대한 교사의 인식 및 활용 실태)

  • Yu, EunHwa;Yun, Jong-Gug
    • Communications of Mathematical Education
    • /
    • v.29 no.3
    • /
    • pp.441-463
    • /
    • 2015
  • The big issue of mathematics education in 2009 revised curriculum is to introduce story-telling in math textbook and to aim toward the math that students can learn easily and interestingly. Therefore, this study examine the perception of middle school teachers in working with story-telling, analyze actual utilization of story-telling in class and provide the basic materials for effective practical application. After making questionnaires to check the real conditions of the story-telling and asking math teachers in charge of the first and second graders, this research came to the conclusion as follows. First, the teachers who took part in this research showed positive perception in story-telling textbook the practical use of a variety of materials and the improvement of thinking faculty and creativity. Second, math teachers made use of a variety of storytelling data and especially reflection media in class, but this was limited in introductory part. Mathematic concept was delivered mainly through the activities of exchanging questions and answers between the teachers and students. Third, students showed positive reaction about story-telling class on the whole. For example, they understood the concept easily and they could apply it in real life. However, story-telling failed to bring the attention and interest of math itself. Therefore, teachers' ability is needed in the way that math knowledge and concept should be formed and expressed interestingly.

A Comparative Study of Statistical Processes in Korean and U.S. Middle School Mathematics Textbooks (한국과 미국 중학교 수학 교과서의 통계적 문제해결과정 비교연구)

  • Jeon, Hyewon;Kim, Rae Young
    • Communications of Mathematical Education
    • /
    • v.33 no.4
    • /
    • pp.425-444
    • /
    • 2019
  • Comparing to the U.S. mathematics textbooks, this study examines the opportunity to learn statistical processes represented in mathematics textbooks reflecting 2015 revised curriculum. Analyzing four different kinds of Korean middle school mathematics textbooks and two kinds of corresponding U.S. textbooks for seventh graders, we found that the tasks dealing with all the phases of statistical processes were found only in the U.S. textbooks while not even one task in such a case was not observed in the Korean textbooks. To make matters worse, the proportion of the tasks dealing with only one phase of statistical processes was 93.3% of all the tasks in Korean textbooks. In terms of types of tasks, the types of tasks were very homogeneous in Korean textbooks, usually Types FPR or PR while more various types of tasks were found in the U.S. textbooks such as Types FRI, PRI, FR, or RI. In views of features of each phase in statistical processes, Korean textbooks heavily focused only on some particular statistical behaviors such as 'formulating a problem', 'collecting data', 'transforming data', and 'analyzing a part of data.' The findings of this study provide meaningful implications for improving statistics education and developing mathematics textbooks to enhance students' statistical thinking and problem-solving ability.

Analysis on Statistical Problem Solving Process of Pre-service Mathematics Teachers: Focus on the Result Interpretation Stage (예비 수학교사들의 통계적 문제해결 과정 분석: 결과 해석 단계를 중심으로)

  • Kim, Sohyung;Han, Sunyoung
    • Communications of Mathematical Education
    • /
    • v.36 no.4
    • /
    • pp.535-558
    • /
    • 2022
  • In the current society, where statistical literacy is recognized as an important ability, statistical education utilizing the statistical problem solving, a series of processes for performing statistics, is required. The result interpretation stage is especially important because many forms of statistics we encounter in our daily lives are the information from the analysis results. In this study, data on private education were provided to pre-service mathematics teachers, and a project was carried out in which they could experience a statistical problem solving process using the population mean estimation. Therefore, this study analyzed the characteristics shown by pre-service mathematics teachers during the result interpretation stage. First, many pre-service mathematics teachers interpreted results based on the data, but the inference was found to be a level of 2 which is not reasonable. Second, pre-service mathematics teachers in this study made various kinds of decisions related to public education, such as improving classes and after-school classes. In addition, the pre-service mathematics teachers in this study seem to have made decisions based on statistical analysis results, but they made general decisions that teachers could make, rather than specifically. Third, the pre-service mathematics teachers of this study were reflective about the question formulation stage, organizing & reducing data stage, and the result interpretation stage, but no one was reflective about the result interpretation stage.

A Comparative Study of Elementary School Mathematics Textbooks between Korea and Japan - Focused on the 4th Grade - (한국과 일본의 초등학교 수학교과서 비교 연구 - 4학년을 중심으로 -)

  • Lee, Jae-Chun;Kim, Seon-Yu;Kang, Hong-Jae
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.13 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • This research is to provide a useful reference for the future revision of textbook by comparative analysis with the textbook in the 4th grade of elementary school in Japan. The results from this research is same as follows: First, Korean curriculum is emphasizing the reasonable problem-solving ability developed on the base of the mathematical knowledge and skill. Meantime, Japanese puts much value on the is focusing on discretion and the capability in life so that they emphasize each person's learning and raising the power of self-learning and thinking. The ratio on mathematics in both company are high, but Japanese ensures much more hours than Korean. Second, the chapter of Korean textbook is composed of 8 units and the title of the chapter is shown as key word, then the next objects are describes as 'Shall we do$\sim$' type. Hence, the chapter composition of Japanese textbook is different among the chapter and the title of the chapter is described as 'Let's do$\sim$'. Moreover, Korean textbook is arranged focusing on present study, however Japanese is composed with each independent segments in the present study subject to the study contents. Third, Japanese makes students understand the decimal as the extension of the decimal system with measuring unit($\ell$, km, kg) then, learn the operation by algorithm. In Korea, students learn fraction earlier than decimal, but, in Japan students learn decimal earlier than fraction. For the diagram, in Korea, making angle with vertex and side comes after the concept of angle, vertex and side is explained. Hence, in Japan, they show side and vertex to present angle.

  • PDF

Prospective Mathematics Teachers' Perceptions of the Use of Hands-On Manipulatives and Technological Tools in Teaching Quadratic Curves (이차곡선 수업에서 공학도구 사용과 수작업 교구 활동에 대한 예비 수학교사들의 인식)

  • Kim, Somin
    • Journal of the Korean School Mathematics Society
    • /
    • v.24 no.1
    • /
    • pp.151-172
    • /
    • 2021
  • In this study, I investigated prospective mathematics teachers' perceptions of activities using Wax-paper, a hands-on material (manipulatives), and GeoGebra, a technological tool, in teaching quadratic curves. Twenty prospective mathematics teachers in the Mathematics Education Department of a local university participated in a survey on their perception of the use of hands-on materials and technological tools in teaching quadratic curves. According to the results of this study, prospective mathematics teachers generally preferred the use of technological tools for learning and teaching quadratic curves. Additionally, mathematics teachers thought that the tool helped students develop intuitive thinking through visualizing quadratic curves, enabling the exploration of various mathematical properties, assisting the comprehension of various concepts, and increasing students' interest levels. However, they were concerned about the immature use of technological tools by students or teachers, and recognized that the advantages and disadvantages of using hands-on material and technological tools were complementary. Based on these findings, it is suggested that hands-on material and technological tools should be used complementally in mathematics classes, and the development and dissemination of class materials that are not affected by students' or teachers' ability to use technological tools is important.

A Case Study of Service Education Activities Applying Mathematics into a Place-Based Earth Science Program: Measuring the Earth's Size (수학과 연계한 장소기반 지구과학 프로그램에 대한 교육봉사활동 사례 연구: 지구의 크기 측정)

  • Yu, Eun-Jeong;Kim, Kyung Hwa
    • Journal of the Korean earth science society
    • /
    • v.40 no.5
    • /
    • pp.518-537
    • /
    • 2019
  • This study examined the implications of a place-based earth science program integrated with Mathematics. 11 pre-service earth science teachers and 22 middle school students participated in the service education activities of earth science for 30 hours focusing on the measurement of the earth's size through earth science experiments as part of the middle school curriculum. In order to minimize errors that may occur during the earth's size measurement experiments using Eratosthenes's shadows length method of the ancient Greek era, the actual data were collected after triangulation ratios were conducted in the locations of two middle schools: one in remote metropolitan and the other in rural area. The two schools' students shared the final estimate result. Through this process, they learned the mathematical method to express the actual data effectively. Participants, experienced the importance and difficulty of the repetitive and accurate data acquisition process, and also discussed the causes of errors included in the final results. It implies that a Place-Based Earth Science Program activity can contribute to students' increased-understanding of the characteristics of earth science inquiry and to developing their problem solving skills, thinking ability, and communication skills as well, which are commonly emphasized in science and mathematics in the 2015 reunion curriculum. It is expected that a place-based science program can provide a foundation for developing an integrated curriculum of mathematics and science.