• Title/Summary/Keyword: Materials property

Search Result 4,149, Processing Time 0.034 seconds

Synthesis and Characterization of Reactive Liquid Crystalline Compounds with Azo-mesogenic Groups at the 4-, 3,5-, or 3,4,5-Positions of Phenyl Ring (페닐고리의 4-, 3,5-, 또는 3,4,5-위치에 아조-메소젠기를 갖는 반응성 액정화합물의 합성 및 특성)

  • Park, Jong-Ryul;Yoon, Doo-Soo;Bang, Moon-Soo
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.247-253
    • /
    • 2019
  • In this study, compounds with azo-mesogenic groups at 4-, 3,5-, or 3,4,5-positions of one phenyl ring were synthesized, and their liquid crystallinity and photochemistry were investigated. The compounds in the Azo1 and Azo2 series had linear and planar geometries, respectively, while those in the Azo3 series had relatively bulky structures. Compounds of BA-Azo2 and BA-Azo3 did not show any liquid crystallinity. Compounds of BE-Azo1 and BE-Azo2 exhibited a monotropic liquid crystallinity, while the other compounds showed an enantiotropic liquid crystallinity. The liquid crystalline behavior was imparted by the azo-mesogenic groups, and most of the liquid crystalline compounds formed a smectic phase. All the RM-AzoX compounds exhibited photoisomerism because of the presence of the azo groups in the molecule. The rate of photoisomerization followed the order of RM-Azo3 < RM-Azo1 < RM-Azo2 and was considered to depend on the steric hindrance around the azobenzene groups in the molecule. These results suggest that the liquid crystallinity and photochemical property of the compounds are affected by the position or the number of azo-mesogenic groups phenyl ring of the molecule.

Effect of Measuring Parameters of Tensile Strength of Fiber-reinforced Composite Materials (섬유강화 복합재료의 인장강도 측정변수에 따른 영향)

  • Lee, Jae-Dong;Jin, Young-Ho;Kim, Min-Seok;Son, Hyun-Sik;Kwon, Dong-Jun
    • Journal of Adhesion and Interface
    • /
    • v.22 no.3
    • /
    • pp.85-90
    • /
    • 2021
  • Generally, the tensile strength of carbon fiber reinforced composite (CFRP) should be determined to produce this material. The tensile strength was performed based on ASTM D3039, and this test could cause the error by specimens and human. In this research, the CFRP tensile test was performed with different thickness of specimens and tap, adhesive for attaching tap, and pressure of jig to hold the specimens, while the test was performed based on ASTM D3039. The tensile stress and modulus exhibited differently with different specimen thicknesses, and the 1~1.5 mm thickness of the specimen was optimized. In the case of 0.28 MPa jig pressure, the slip or fracture at the clamping area of the specimen has not occurred, and specimens were fractured to the center section of the specimen. The adhesive to attach jig on specimen should be used to exhibit high adhesive stress. Experimental parameters could cause errors. It is expected to achieve an accurate tensile property evaluation of composite materials via improvements in adhesives, tabs, and jigs.

A Study on Physico-Chemical Properties on Mixed Fuel Oil of Very Low Sulfur Fuel Oil-High Sulfur Fuel Oil (VLSFO-HSFO) (저유황-고유황 혼합연료유의 물리화학적 특성연구)

  • Song, In-Chul;Shin, Su-Hyun;Kim, Sae-Mi;Lee, Hee-Jin;Seo, Jeong-Mog
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.864-872
    • /
    • 2020
  • In accordance with the sulfur regulations of the International Maritime Organization (IMO), very low sulfur fuel oil (VLSFO) shows various production-dependent physico-chemical properties. This study aims to use as basic data for oil spill response according to study of physico-chemical characteristics of VLSFO and mixed fuel oil of VLSFO-HSFO. The mixed fuel oil was prepared by mixing 25, 50, 75 mass% of HSFO with VLSFO containing 0.46 and 0.36 mass% of sulfur. The physico-chemical properties such as the kinematic viscosity, pour point and distribution of Saturates, Aromatics, Resins, and Asphaltenes (SARA) were studied in the laboratory. As mixed of 75 mass% of HSFO with high the kinematic viscosity and low pour point in VLSFO, the kinematic viscosity of the mixed fuel oil increased to 350.2 %, and VLSFO with pour point of 23℃ and -11℃ lowered or raised to -3℃ and -6℃ respectively. As HSFO was mixed in VLSFO with a small Asphaltenes distribution, the Saturates distribution decreased to 68.8% and Asphaltenes distribution increased to 1,417 % dramatically.

Field Applicability Evaluation of Control Low Strength Materials as Utilizing Various Industrial by-Products (공동충전재로써 각종 산업부산물을 활용한 CLSM의 현장적용 가능성 평가)

  • Liao, Xiao-kai;Kim, Dong-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.387-394
    • /
    • 2020
  • In this research, a physical property test of CLSM, which can safely and effectively utilize a great number of industrial byproducts and waste types, was used to review the applicability of GBFS, FNS, and FGB, as well as their field applicabilities as cavity fillers, and the following conclusions have been reached. first, For CLSM utilizing GBFS, FNS, and FGB, it was revealed that a proper mixing of over 30% of GBFS and FNS or within 5% of FGB is effective in improving the fluidity for field application. second, It was revealed that GF15B5 can suppress bleeding at a similar level as the base, whereas GF30B5 can do so at about 0.17% compared to the base. It was also verified that GF15, GF30, and GF45 can suppress bleeding at about 0.2%, 0.26%, and 0.3%, respectively, compared to the base. third, Both GF15B5 and GF30B5 exceeded 0.4MPa in 7day strength tests to satisfy the field application and, also, the rates of increase of their initial strengths were found to be 323% and 233% higher than the base, respectively. Meanwhile, the 7day strength test of GF, which utilizes GBFS and FNS, also reached over 0.2MPa for field application, and it was revealed that GF15, GF30, and GF45 show 160%, 237%, and 185% higher strength increase rates, respectively, compared to the base.

A Study on Inhibition of Bacterial Membrane Formation in Biofilm formed by Acne Bacteria in Valine through Property Analysis (물성 분석을 통한 Valine 의 여드름균 바이오필름 내부 세균막 형성 억제 연구)

  • Song, Sang-Hun;Hwang, Byung Woo;Son, Seongkil;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.163-170
    • /
    • 2021
  • This study was conducted to create a technology to remove acne bacteria with human-friendly materials. First, the Cutibacterium acnes (C. acnes) were adsorbed to the mica disc to grow, and then the biofilm was checked through an atomic microscope to see if the biofilm had grown. Based on the topographic image, the shape changed round, the size was 17% longer on average, and the phase value of the resonance frequency separating materials was observed as a single value, the biofilm grown by covering the extracellular polymeric substrate (EPS). As a result of processing 50 mM of amino acids in the matured biofilm, the concentration of C. acnes decreased when valine, serine, arginine and leucine were treated. Scanning with nanoindentation and AFM contact modes confirmed that the hardness of biofilms treated with Valine (Val) increased. This indicates that an AFM tip measured cell which may have more solidity than that of EPS. The experiment of fluorescent tagged to EPS displays an existence of EPS at the condition of 10 mM Val, but an inhibition of growth of EPS at the 50 mM Val. Number of C. acnes was also reduced above 10 mM of Val. Weak adhesion of biofilm generated from an inhibition of EPS formation seems to induce decrease of C. acnes. Accordingly, we elucidated that Val has an efficiency which eliminates C. acnes by approach of an inhibition of EPS.

Low-k Polymer Composite Ink Applied to Transmission Line (전송선로에 적용한 Low-k 고분자 복합 잉크 개발)

  • Nam, Hyun Jin;Jung, Jae-Woong;Seo, Deokjin;Kim, Jisoo;Ryu, Jong-In;Park, Se-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.99-105
    • /
    • 2022
  • As the chip size gets smaller, the width of the electrode line is also fine, and the density of interconnections is increasing. As a result, RC delay is becoming a problem due to the difference in resistance between the capacitor layer and the electrical conductivity layer. To solve this problem, the development of electrodes with high electrical conductivity and dielectric materials with low dielectric constant is required. In this study, we developed low dielectric ink by mixing commercial PSR which protect PCB's circuits from external factors and PI with excellent thermal property and low-k characteristics. As a result, the ink mixture of PSR and PI 10:3 showed the best results, with a dielectric constant of about 2.6 and 2.37 at 20 GHz and 28 GHz, respectively, and dielectric dissipation was measured at about 0.022 and 0.016. In order to verify the applicability of future applications, various line-width transmission lines produced on Teflon were evaluated, and as a result, the loss of transmission lines using low dielectric ink mixed with PI was 0.12 dB less on average in S21 than when only PSR was used.

Development of a Centrifugal Microreactor for the Generation of Multicompartment Alginate Hydrogel (다중 알긴산 입자제조를 위한 원심력 기반 미세유체 반응기 개발)

  • Ju-Eon, Jung;Kang, Song;Sung-Min, Kang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2023
  • Microfluidic reactors have been made to achieve significant development for the generation of new functional materials to apply in a variety of fields. Over the last decade, microfluidic reactors have attracted attention as a user-friendly approach that is enabled to control physicochemical parameters such as size, shape, composition, and surface property. Here, we develop a centrifugal microfluidic reactor that can control the flow of fluid based on centrifugal force and generate multifunctional particles of various sizes and compositions. A centrifugal microfluidic reactor is fabricated by combining microneedles, micro- centrifuge tubes, and conical tubes, which are easily obtained in the laboratory. Depending on the experimental control param- eters, including centrifuge rotation speed, alginate concentration, calcium ion concentration, and distance from the needle to the calcium aqueous solution, this strategy not only enables the generation of size-controlled microparticles in a simple and reproducible manner but also achieves scalable production without the use of complicated skills or advanced equipment. Therefore, we believe that this simple strategy could serve as an on-demand platform for a wide range of industrial and academic applications, particularly for the development of advanced smart materials with new functionalities in biomedical engineering.

The Marrakesh Treaty and the Tasks of Library Services for Persons with Disabilities (마라케시 조약과 도서관 장애인서비스 과제)

  • 윤희윤
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.56 no.3
    • /
    • pp.73-91
    • /
    • 2022
  • For everyone, books are not only a passage to break down temporal and spatial barriers, but also a passport to the world. However, books are neither a passage nor a passport for persons with print disabilities. They are suffering from a severe book famine, with only 1-7% of alternative materials in accessible formats. The Marrakesh Treaty is an international agreement promoted by the WBU and WIPO to reduce such access gaps and inequalities. Accordingly, this study intensively analyzed and linked the global book famine and the Marrakesh Treaty for the persons with print disabilities including the blind and visually impaired, and suggested strategic tasks and implementation plans to strengthen the services of the disabled in domestic libraries. The government and libraries should concentrate all their competencies on improving awareness, inducing standardization of alternative materials in the publishing industry, amending and supplementing the copyright act and related laws, strengthening the digital file collection and service of the National Library for the disabled, and developing and applying library guidelines to implement the Marrakesh Treaty. This is because if food supports the body of the disabled, reading fosters their spirit. In order to solve the global book famine for persons with print disabilities, it is necessary to improve the publishing industry's cartels, copyright holders' barricades, and the weak platform of the library industry. All copyright holders, publishers, and libraries should participate in reducing the 95% gap in access between non-disabled and disabled people. That is the mantra of the book famine.

Experimental Study on the Thermal Characteristics According to the Content Change of Biodiesel Mixture (바이오디젤 혼합물의 함량변화에 따른 열적 특성에 대한 실험적인 연구)

  • Ju Suk Kim;Jae Sun Ko
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.532-544
    • /
    • 2023
  • Purpose: To identify and evaluate the risk of chemical fire causative substances by using thermal analysis methods (DSC, TGA) for the hazards and physical property changes that occur when newly used biofuels are mixed with existing fuels It is to use it for identification and evaluation of the cause of fire by securing data related to the method and the hazards of the material according to it. Method: The research method used in this experiment is the differential scanning calorimeter (DSC: Difference in heat flux) through quantitative information on the caloric change from the location, shape, number, and area of peaks. flux) was measured, and the weight change caused by decomposition heat at a specific temperature was continuously measured by performing thermogravimetric analyzer (TGA: Thermo- gravimetric Analyzer). Result: First, in the heat flux graph, the boiling point of the material and the intrinsic characteristic value of the material or the energy required for decomposition can be checked. Second, as the content of biodiesel increased, many peaks were identified. Third, it was confirmed through analysis that substances with low expected boiling points were contained. Conclusion: It was shown that the physical risk of the material can be evaluated by using the risk of biodiesel, which is currently used as a new energy source, through various physical and chemical analysis techniques (DSC + TGA).In addition, it is expected that the comparison of differences between test methods and the accumulation and utilization of know-how on experiments in this study will be helpful in future studies on physical properties of hazardous materials and risk assessment of materials.

Estimation of the Mechanical Properties of the Concrete Tunnel Lining by Drilling Resistance Test (천공저항시험에 의한 콘크리트 터널라이닝의 역학적 특성 추정)

  • Choi, Soon-Wook;Sung, Yun-Chang;Cheong, Ho-Seop;Chang, Soo-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.87-98
    • /
    • 2007
  • For the quick rehabilitation of a fire-damaged tunnel structure, it is the most important procedure to investigate the fire-induced damaged zone rapidly. This study aims to propose a new drilling resistance testing method by which mechanical properties of tunnel concrete lining altered by high temperature can be estimated easily and continuously. Especially, it alms to derive the relationships to estimate mechanical properties of mortar and concrete materials from drilling parameters. To obtain the optimum testing condition, a series of drilling resistance tests were carried out for mortar specimens. When the rotation per minute of drill bit, tile penetration rate and the bit diameter were 1,300 rpm, 1.40 mm/sec, and 10 mm respectively, the deviation of measured drilling resistance forces was minimal. Under the optimum testing condition, the relationships between drilling resistance and mechanical properties of mortar specimens were shown to be very favorable. The concept of replacing a mean value of resistance farces measured during drilling with the resistance energy was proposed to consider the effects of randomly distributed aggregates inside a concrete material on drilling resistance. When the concept was applied to concrete materials, a favorable relationship between actual compressive strength and drilling resistance energy was also successfully derived.