Acknowledgement
본 연구는 2021학년도 상명대학교 교내연구비를 지원받아 수행하였음.
References
- S. M. Kang, G. W. Lee, and Y. S. Huh, Centrifugal force-driven modular micronozzle system: Generation of engineered alginate microspheres, Sci. Rep., 9, 12776 (2019).
- S. M. Kang, M. Rethinasabapathy, G. W. Lee, C. H. Kwak, B. Park, W. S. Kim, and Y. S. Huh, Generation of multifunctional encoded particles using a tetrapod microneedle injector, J. Ind. Eng. Chem., 74, 164-171 (2019). https://doi.org/10.1016/j.jiec.2019.02.023
- B. Park, J. Kim, S. M. Ghoreishian, M. Rethinasabapathy, Y. S. Huh, and S. M. Kang, Generation of multi-functional core-shell adsorbents: Simultaneous adsorption of cesium, strontium and rhodamine B in aqueous solution, J. Ind. Eng. Chem., 112, 201-209 (2022). https://doi.org/10.1016/j.jiec.2022.05.014
- G. M. Whitesides, The origins and the future of microfluidics, Nature, 442, 368-373 (2006). https://doi.org/10.1038/nature05058
- C. M. Kim and G. M. Kim, Development of multilayered droplet splitting microfluidic system for preparation of microdroplet, J. Korean Soc. Precis. Eng., 39, 425-431 (2022). https://doi.org/10.7736/JKSPE.022.015
- P. L. Suryawanshi, S. P. Gumfekar, B. A. Bhanvase, S. H. Sonawane, and M. S. Pimplapure, A review on microreactors: Reactor fabrication, design, and cutting-edge applications, Chem. Eng. Sci., 189, 431-448 (2018). https://doi.org/10.1016/j.ces.2018.03.026
- A. Moreira, J. Carneiro, J. B. L. M. Campos, and J. M. Miranda, Production of hydrogel microparticles in microfluidic devices: a review. Microfluid. Nanofluidics, 25, 1-24 (2021). https://doi.org/10.1007/s10404-020-02401-y
- M. Xia, S.-M. Kang, G. W. Lee, Y. S. Huh, and B. J. Park, The recyclability of alginate hydrogel particles used as a palladium catalyst support, J. Ind. Eng. Chem., 73, 306-315 (2019). https://doi.org/10.1016/j.jiec.2019.01.042
- M. Zhang, R. Ettelaie, L. Dong, X. Li, T. Li, X. T. Li, X. Zhang, B. P. Binks, and H. Yang, Pickering emulsion droplet-based biomimetic microreactors for continuous flow cascade reactions, Nat. Commun., 13, 1-11 (2022).
- S. M. Kang, M. Rethinasabapathy, S. K. Hwang, G. W. Lee, S. C. Jang, C. H. Kwak, S. R. Choe, and Y. S. Huh, Microfluidic generation of prussian blue-iaden magnetic micro-adsorbents for cesium removal, Chem. Eng. J., 341, 218-226 (2018). https://doi.org/10.1016/j.cej.2018.02.025
- E. M. Lucchetta, M. S. Munson, and R. F. Ismagilov, Characterization of the local temperature in space and time around a developing Drosophila embryo in a microfluidic device, Lab Chip, 6, 185-190 (2006). https://doi.org/10.1039/b516119c
- N. Li Jeon, H. Baskaran, S. K. W. Dertinger, G. M. Whitesides, L. V. D. Water, and M. Toner, Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device, Nat. Biotechnol., 20, 826-830 (2002). https://doi.org/10.1038/nbt712
- T. A. Hakala, F. Bialas, Z. Toprakcioglu, K. N. Baumann, A. Levin, G. J. L. Bernardes, C. F. W. Becker, and T. P. J. Knowles, Continuous flow reactors from microfluidic compartmentalization of enzymes within inorganic microparticles, ACS Appl. Mater. Interfaces., 12, 32951-32960 (2020). https://doi.org/10.1021/acsami.0c09226
- J. H. Lee, J. Y. Ma, and J. C. Kim, The preparation and release property of alginate microspheres coated gelatin-cinnamic acid, Appl. Chem. Eng., 24, 471-475 (2013). https://doi.org/10.14478/ace.2013.24.5.471
- N. Kikuchi, M. May, M. Zweber, J. Madamba, C. Stephens, U. Kim, and M. Mobed-Miremadi. Sustainable, alginate-based sensor for detection of escherichia coli in human breast milk, Sensors, 20, 1-15 (2020). https://doi.org/10.1109/JSEN.2019.2959158
- Z. Wu, Y. Zheng, L. Lin, S. Mao, Z. Li, and J. Lin, Controllable synthesis of multicompartmental particles using 3D microfluidics, Angew. Chem., 132, 2245-2249 (2020). https://doi.org/10.1002/ange.201911252
- G. Tang, R. Xiong, D. Lv, R. X. Xu, K. Braeckmans, C. Huang, and S. C. De Smedt, Gas-shearing fabrication of multicompartmental microspheres: A one-step and oil-free approach, Adv. Sci.., 6, 1802342 (2019).
- I. Kobayashi, K. Uemura, and M. Nakajima, Formulation of monodisperse emulsions using submicron-channel arrays, Colloids Surf., A: Physicochem. Eng. Asp., 296, 285-289 (2007). https://doi.org/10.1016/j.colsurfa.2006.09.015
- Y. Hu, G. Azadi, and A. M. Ardekani, Microfluidic fabrication of shape-tunable alginate microgels: Effect of size and impact velocity, Carbohydr. Polym., 120, 38-45 (2015). https://doi.org/10.1016/j.carbpol.2014.11.053
- Y. Xia and G. M. Whitesides, Soft lithography, Angew. Chem., Int. Ed., 37, 550-575 (1998). https://doi.org/10.1002/(sici)1521-3773(19980316)37:5<550::aid-anie550>3.0.co;2-g
- E. Verpoorte and N. F. De Rooij, Microfluidics meets MEMS, Proc. IEEE, 91, 930-953 (2003). https://doi.org/10.1109/JPROC.2003.813570
- S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmuller, K. F. Weibezahn, and A. Welle, 3D tissue culture substrates produced by microthermoforming of pre-processed polymer films, Biomed. Microdevices, 8, 191-199 (2006). https://doi.org/10.1007/s10544-006-8174-8
- L. Fan, Q. Yan, Q. Qian, S. Zhang, L. Wu, Y. Peng, S. Jiang, L. Guo, J. Yao, and H. Wu, Laser-induced fast assembly of wettability-finely-tunable superhydrophobic surfaces for lossless droplet transfer, ACS Appl. Mater. Interfaces, 14, 36246-36257 (2022). https://doi.org/10.1021/acsami.2c09410
- A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, Monodisperse double emulsions generated from a microcapillary device, Science, 308, 537-541 (2005). https://doi.org/10.1126/science.1109164
- B. H. Kwon, K. G. Lee, T. J. Park, H. Kim, T. J. Lee, S. J. Lee, and D. Y. Jeon, Continuous in situ synthesis of ZnSe/ZnS core/shell quantum dots in a microfluidic reaction system and its application for light-emitting diodes, Small, 8, 3257-3262 (2012). https://doi.org/10.1002/smll.201200773
- M. G. Pollack, A. D. Shenderov, and R. B. Fair, Electrowettingbased actuation of droplets for integrated microfluidics, Lab Chip, 2, 96-101 (2002). https://doi.org/10.1039/b110474h
- E. Perrone, M. Cesaria, A. Zizzari, M. Bianco, F. Ferrara, L. Raia, V. Guarino, M. Cuscuna, M. Mazzeo, G. Gigli, L. Moroni, and V. Arima, Potential of CO2-laser processing of quartz for fast prototyping of microfluidic reactors and templates for 3D cell assembly over large scale, Mater. Today Bio, 12, 100163 (2021).
- S. W. Seo, K. Y Ko, C. S. Lee, and I. H. Kim, CaCO3 biomineralization in microfluidic crystallizer, Korean Chem. Eng. Res., 51, 151-156 (2013). https://doi.org/10.9713/kcer.2013.51.1.151
- S. M. Scott and Z. Ali, Fabrication methods for microfluidic devices: An overview, Micromachines, 12, 319 (2021).
- D. J. Guckenberger, T. E. D. Groot, A. M. D. Wan, D. J. Beebe, and E. W. K. Young, Micromilling: A method for ultra-rapid prototyping of plastic microfluidic devices, Lab Chip, 15, 2364-2378 (2015). https://doi.org/10.1039/c5lc00234f
- T. N. A. Vo and P. C. Chen, Maximizing interfacial bonding strength between PDMS and PMMA substrates for manufacturing hybrid microfluidic devices withstanding extremely high flow rate and high operation pressure, Sens. Actuators A: Phys., 334, 113330 (2022).
- L. C. Duarte, I. Pereira, L. I. L. Maciel, B. G. Vaz, and W. K. T. Coltro, 3D printed microfluidic mixer for real-time monitoring of organic reactions by direct infusion mass spectrometry, Anal. Chim. Acta, 1190, 339252 (2022).
- Y. Zhu, Q. Chen, L. Shao, Y. Jia, and X. Zhang, Microfluidic immobilized enzyme reactors for continuous biocatalysis, React. Chem. Eng., 5, 9-32 (2020). https://doi.org/10.1039/C9RE00217K
- B. Park, S. M. Ghoreishian, Y. Kim, B. J. Park, S.-M. Kang, and Y. S. Huh, Dual-functional micro-adsorbents: Application for simultaneous adsorption of cesium and strontium, Chemosphere, 263, 128266 (2021).
- N. Honda, U. Lindberg, P. Andersson, S. Hoffmann, and H. Takei, Simultaneous multiple immunoassays in a compact disc- shaped microfluidic device based on centrifugal force, Clin. Chem., 51, 1955-1961 (2005). https://doi.org/10.1373/clinchem.2005.053348
- B. J. Kim, H. S. Jeong, and C. H. Choi, Highly efficient production of monodisperse poly(ethylene glycol) (PEG) hydrogel microparticles by utilizing double emulsion drops with a sacrificial thin oil shell, Korean Chem. Eng. Res., 60, 139-144 (2022).
- K. Maeda, H. Onoe, M. Takinoue, and S. Takeuchi, Controlled synthesis of 3D multi-compartmental particles with centrifugebased microdroplet formation from a multi-barrelled capillary, Adv. Mater., 24, 1340-1346 (2012). https://doi.org/10.1002/adma.201102560