DOI QR코드

DOI QR Code

Low-k Polymer Composite Ink Applied to Transmission Line

전송선로에 적용한 Low-k 고분자 복합 잉크 개발

  • Nam, Hyun Jin (ICT device packaging Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Jung, Jae-Woong (ICT device packaging Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Seo, Deokjin (ICT device packaging Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Kim, Jisoo (ICT device packaging Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Ryu, Jong-In (ICT device packaging Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Park, Se-Hoon (ICT device packaging Research Center, Korea Electronics Technology Institute (KETI))
  • 남현진 (한국전자기술연구원 ICT디바이스패키징연구센터) ;
  • 정재웅 (한국전자기술연구원 ICT디바이스패키징연구센터) ;
  • 서덕진 (한국전자기술연구원 ICT디바이스패키징연구센터) ;
  • 김지수 (한국전자기술연구원 ICT디바이스패키징연구센터) ;
  • 유종인 (한국전자기술연구원 ICT디바이스패키징연구센터) ;
  • 박세훈 (한국전자기술연구원 ICT디바이스패키징연구센터)
  • Received : 2022.06.10
  • Accepted : 2022.06.21
  • Published : 2022.06.30

Abstract

As the chip size gets smaller, the width of the electrode line is also fine, and the density of interconnections is increasing. As a result, RC delay is becoming a problem due to the difference in resistance between the capacitor layer and the electrical conductivity layer. To solve this problem, the development of electrodes with high electrical conductivity and dielectric materials with low dielectric constant is required. In this study, we developed low dielectric ink by mixing commercial PSR which protect PCB's circuits from external factors and PI with excellent thermal property and low-k characteristics. As a result, the ink mixture of PSR and PI 10:3 showed the best results, with a dielectric constant of about 2.6 and 2.37 at 20 GHz and 28 GHz, respectively, and dielectric dissipation was measured at about 0.022 and 0.016. In order to verify the applicability of future applications, various line-width transmission lines produced on Teflon were evaluated, and as a result, the loss of transmission lines using low dielectric ink mixed with PI was 0.12 dB less on average in S21 than when only PSR was used.

칩사이즈가 작아짐에 따라 선폭 또한 미세화되면서 인터커넥션의 밀집정도가 증가하고 있다. 그로 인해 캐패시터 층과 전기전도층의 저항 차이로 인해 RC delay가 문제되고 있다. 이를 해결하기 위해서는 높은 전기전도도의 전극과 낮은 유전율의 유전체 개발이 요구된다. 본 연구에서는 PCB (Print Circuit Board)의 회로를 외부요인으로부터 보호하는 상용 PSR (photo solder resist)과 우수한 내열 및 저유전 특성을 보유한 PI (polyimide)를 혼합하여 저유전체 잉크 개발을 진행하였다. 그 결과 PSR과 PI를 10:3으로 혼합한 잉크가 가장 우수한 결과를 보였으며 20 GHz와 28 GHz에서 각각 유전 상수 약 2.6, 2.37을 보였고, 유전손실은 약 0.022, 0.016으로 측정되었다. 차후 어플리케이션 적용 가능성 검증을 위해 테프론에 제작된 다양한 선폭의 전송선로에 평가하였으며 그 결과, PSR만 사용했을 때보다 PI와 혼합한 저유전체 잉크를 사용한 전송선로의 손실이 S21에서 평균 0.12 dB 덜 감소한 결과를 보였다.

Keywords

Acknowledgement

이 연구는 산업기술혁신사업의 일환인 "인쇄전자공법이 적용된 30㎛급 선폭의 고속신호 전송용 초고다층 PCB 기판 개발"지원으로 수행되었습니다(과제번호 20010022).

References

  1. M. Zhang, P. Xu, H. Peng, F. Qin, "A Rational Design of Core-Shell-Satellite Structured BaTiO3 Fillers for Epoxy-Based Composites with Enhanced Microwave Dielectric Constant and Low Loss", Compos. B. Eng., 215, 108764 (2021). https://doi.org/10.1016/j.compositesb.2021.108764
  2. W. Zhao, X. Cao, J. Huang, J. Wen, Y. He, J. Zha, R. K. Y. Li, W. Wu, "Construction of Micro-Branched Crosslink Fluorinated Polyimide with Ultra-Low Dielectric Permittivity and Enhanced Mechanical Properties", Express Polym. Lett., 16(2), 142-151 (2022). https://doi.org/10.3144/expresspolymlett.2022.12
  3. C. C. Chiu, C. C. Lee, T. L. Chou, C. C. Hsia, K. N. Chiang, "Analysis of Cu/Low-k Structure under Back End of Line Process", Microelectron. Eng., 85(10), 2150-2154 (2008). https://doi.org/10.1016/j.mee.2008.04.007
  4. L. Broussous, W. Puyrenier, D. Rebiscoul, V. Rouessac, A. Ayral, "Porosity and Structure Evolution of a SiOCH Low k Material During Post-Etch Cleaning Process", Microelectron. Eng., 84(11), 2600-2605 (2007). https://doi.org/10.1016/j.mee.2007.07.001
  5. L. L. Chapelon, E. Petitprez, P. Brun, A. Farcy, J. Torres, "Evaluation of a PECVD Advanced Barrier (k = 3.7) for 32 nm CMOS Technology and Below", Microelectron. Eng., 84(11), 2624-2628 (2007). https://doi.org/10.1016/j.mee.2007.05.022
  6. M. B. Yu, J. Ning, S. Balakumar, V. N. Bliznetsov, G. Q. Lo, N. Balasubramanian, D. L. Kwong, "A Method of Fabricating Metal-Insulator-Metal (MIM) Capacitor in Cu/low-k Backend Interconnection Process for RF Application", Thin Solid Films, 504(1-2), 257-260 (2006). https://doi.org/10.1016/j.tsf.2005.09.176
  7. T. S. Chang, T. C. Chang, P. T. Liu, C. Y. Chiang, S. C. Chen, F. S. Yeh, "Application of the Low Dielectric Methyl-Silses-quiazane (MSZ) as a Passivation Layer on TFT-LCD", Thin Solid Films, 515(3), 1117-1120 (2006). https://doi.org/10.1016/j.tsf.2006.07.053
  8. C. Charles-Alfred, V. Jousseaume, "a-SiC:H Low-k Deposition as Copper Diffusion Barrier Layer in Advanced Microelectronic Interconnections", Surf. Coat., 201(22-23), 9260-9263 (2007). https://doi.org/10.1016/j.surfcoat.2007.04.065
  9. G. Maier, "Low Dielectric Constant Polymers for Microelectronics", Prog. Polym. Sci., 26(1), 3-65 (2001). https://doi.org/10.1016/S0079-6700(00)00043-5
  10. R. K. Hallani, M. Moser, H. Bristow, M. V. C. Jenart, H. Faber, M. Neophytou, E. Yarali, A. F. Paterson, T. D. Anthopoulos, L. McCulloch, "Low-Temperature Cross-Linking Benzocyclobutene Based Polymer Dielectric for Organic Thin Film Transistors on Plastic Substrates", J. Org. Chem., 85(1), 277-283 (2020). https://doi.org/10.1021/acs.joc.9b02981
  11. M. Hollerer, D. Luftner, P. Hurdax, T. Ules, S. Soubatch, F. S. Tautz, G. Koller, P. Puschnig, M. Sterrer, M. G. Ramsey, "Charge Transfer and Orbital Level Alignment at Inorganic/Organic Interfaces: The Role of Dielectric Interlayers", ACS Nano, 11(6), 6252-6260 (2017). https://doi.org/10.1021/acsnano.7b02449
  12. A. Liu, G. Liu, H. Zhu, B. Shin, E. Fortunato, R. Martins, F. Shan, "Eco-Friendly Water Induced-Aluminum Oxide Dielectrics and Their Application in a Hybrid Metal Oxide/Polymer TFT", RSC Advances, 5(105), 86606-86613 (2015). https://doi.org/10.1039/C5RA15370K
  13. P. Xue, J. Feng, C. Xie, L. Wang, A. Tudi, E. V. Tikhonov, K. T. Butler, "Revealing the Crystal Structures and Relative Dielectric Constants of Fluorinated Silicon Oxides", J. Mater. Chem. C, 9(44), 15983-15989 (2021). https://doi.org/10.1039/D1TC02769G
  14. J. Comeaux, W. Wirth, J. Courville, N. W. Baek, D. Jung, S. Jang, "Etching Characteristics of Low-k SiCOH Thin Films under Fluorocarbon-Based Plasmas", Vacuum, 202, 111165 (2022). https://doi.org/10.1016/j.vacuum.2022.111165
  15. Z. Wang, B. Jiang, Y. Zhang, X. Li, Y. Wang, Y. Shang, H. Zhang, "Influence of Crosslink Density on Thermal, Mechanical and Dielectric Properties of Cross-Linked Fluorinated Poly(Aryl Ether)s", Eur. Polym. J., 172, 111244 (2022). https://doi.org/10.1016/j.eurpolymj.2022.111244
  16. S. Kumar, H. Arumugham, D. Roy, D. Kannaliyan, "Synthesis and Characterization of Fluorine Functionalized Graphene Oxide Dispersed Quinoline-Based Polyimide Composites Having Low-k and UV Shielding Properties", Polym. Adv. Technol., 33(1), 472-439 (2022).
  17. M. Shefali, K. Fatima, U. Sathyakam, "Performance Analysis of CNT Bundle Interconnects in Various Low-k Dielectric Media", ECS J. Solid State Sci. Technol., (2022).
  18. M. Brownell, A. K. Nair, "Deformation mechanisms of polytetrafluoroethylene at the nano- and microscales", Phys. Chem. Chem. Phys., 21(1), 490-503(2019). https://doi.org/10.1039/c8cp05111a
  19. F. Iervolino, R. Suriano, M. Scolari, I. Gelmi, L. Castoldi, M. Levi, "Inkjet Printing of a Benzocyclobutene-Based Polymer as a Low-k Material for Electronic Applications", ACS Omega, 6(24), 15892-15902 (2021). https://doi.org/10.1021/acsomega.1c01488
  20. J. Li, Z. Zhang, T. Zhu, Z. Li, J. Wang, Y. Cheng, "Multi-benzocyclobutene Functionalized Siloxane Monomers Prepared by Piers-Rubinsztajn Reaction for Low-k Materials", Eur. Polym. J., 126, 109562 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109562
  21. R. K. S Levchenko, K. A. Chudov, D. Y. Demin, G. E. Adamov, N. O. Poroshin, P. S. Shmelin, E. P. Grebennikov, S. N. Chvalun, V. P. Zubov, "Synthesis of Photo and Thermosetting Monomers and Polymers Based on Benzocyclobutene", 68(7), 1321-1342 (2019). https://doi.org/10.1007/s11172-019-2559-3
  22. K. K. Banger, Y. Yamashita, K. Mori, R. L. Peterson, T. Leed-ham, J. Rickard and H. Sirringhaus, "Low-Temperature, High Performance Solution Processed Metal Oxide Thin-Film Transistors Formed by a 'Sol-Gel on Chip' Process", Nature Mater., 10(1), 45-50 (2011). https://doi.org/10.1038/nmat2914
  23. A. Liu, H. Zhu, H. Sun, Y. Xu and Y.-Y. Noh, "Solution Processed Metal Oxide High-k Dielectrics for Emerging Transistors and Circuits", Adv. Mater., 30(33), 1706364(1)-1706364 (39) (2018). https://doi.org/10.1002/adma.201706364
  24. B. Nketia.-Yawson, Y.-Y. Noh, "Recent Progress on High-Capacitance Polymer Gate Dielectrics for Flexible Low- Voltage Transistors, Adv. Mater., 28(42), 1802201(1)-1802201 (27) (2018).
  25. A. Azizi, M. R. Gadinski, Q. Li, M. A. AlSaud, J. Wang, Y. Wang, B. Wang, F. Liu, L. Q. Chen, N. Alem and Q. Wang, "High-Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable High-Temperature Dielectric Materials", Adv. Mater., 29(35), 1701864(1)-1701864(7) (2017). https://doi.org/10.1002/adma.201701864
  26. Y. Zhou and Q. Wang, "Advanced Polymer Dielectrics for High Temperature Capacitive Energy Storage", J. Appl. Phys., 127(24), 240902(1)-240902(18) (2020). https://doi.org/10.1063/5.0009650
  27. W. Wu, "Inorganic Nanomaterials for Printed Electronics: A Review", Nanoscale, 9(22), 7342-7372 (2017). https://doi.org/10.1039/c7nr01604b
  28. A. Alshabo, D. Stirling, M. Ros, P. J. Vial, B. Wysocki, T. Wysocki, "An Approach to Ultra-Wideband Channel Calibration using a Vector Network Analyser", Aust. J. Electr. Electron., 11(4), 347-356 (2014).