• 제목/요약/키워드: Materials property

Search Result 4,149, Processing Time 0.029 seconds

Correlation Analysis Between Terpene and Meteorological Factors at Artificial Coniferous Forest of Mt. Moodeung (무등산 인공 침엽수림에서 테르펜과 기상인자의 상관성분석)

  • Lee, Dae-Haeng;Kim, Min-Hee;Seo, Hee-Jeong;Min, Gyung-Woo;Kim, Seung-Ho;Seo, Kwang-Yeob;Jeong, Won-Sam;Kang, Young-Ju;An, Ki-Wan;Paik, Ge-Jin;Moon, Yong-Woon;Kim, Eun-Sun
    • Journal of Environmental Science International
    • /
    • v.21 no.10
    • /
    • pp.1221-1234
    • /
    • 2012
  • There are many factors to influence the amount of terpene at the forest. However, it is poorly understood whether the amount is altered by meteorological factors. In order to study correlation analysis between terpene amount and meteorological(i.e., temperature, humidity, wind speed, solar radiation) and environmental factors(i.e., oxygen, carbonb dioxide) at the artificial coniferous forest of Chamaecyparis obtusa (site 1) and Cryptomeria japonica (site 2) nearby the $1^{st}$ reservoir at Mt. Moodeung, the research was executed during April to November in 2011. Forest density at site 1 was 1,692 trees/ha, being occupied with 87.2% of Chamaecyparis obtusa, higher than 925 trees/ha at site 2. Carbon dioxide at site 1 was in the range of 385~410 ppm in June, similar to at Anmyundo(395 ppm in 2010). Solar radiation has positive correlation with ambient temperature and inversely negative with relative humidity. Main species of terpene released were ${\alpha}$-pinene, camphene, ${\beta}$-pinene, cymene, ${\delta}$-limonene and camphor at two sites and terpene was more effluent at spring and summer than at fall. The large amount of terpene was emitted in the afternoon than in the morning under the influence of the wind speed and the topographical property. The terpene amount has positive correlation with relative humidity and oxygen, and negative with wind speed and soil temperature. Because correlations of ${\alpha}$-pinene and other terpene materials showed statistically significant within p=0.01. ${\alpha}$-pinene could be suggested as the basic material in explaining the amount of other terpene materials.

Bone formation of newly developed biphasic calcium phosphate in rabbit calvarial defect model : A pilot study (토끼 두개골에서 새로 개발된 biphasic calcium phosphate의 골형성 효과 : A pilot study)

  • Um, Yoo-Jung;Hong, Ji-Yeon;Kim, Sung-Tae;Lee, Yong-Ho;Park, Sang-Hyun;Park, Sun-Hyo;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.163-170
    • /
    • 2008
  • Purpose: Biphasic calcium phosphates have been of great interest recently. Mixing adequate ratios of hydroxyapatite(HA) and beta-tricalcium phosphate($\beta$-TCP) allowed to control the resorption rate without distorting its osteoconductive property. This study evaluated the bone formation effect of newly developed biphasic calcium phosphate(BCP) in calvarial defect of rabbits. Materials and Methods: 6 male New Zealand rabbits were used. Four defects with 8mm in diameter were created on each animal. BCP with HA/$\beta$-TCP ratio of 7:3 and particle size of $0.5{\sim}1.0\;mm$ was used as the test group and bovine bone with $0.25{\sim}1.0\;mm$ particle size, as the control group. Both test and control group materials were randomly implanted in the calvarial defects and were covered witha polymer membrane. The animals were sacrificed after 12, 24, and 48 weeks of implantation under general euthanasia. Resin blocks were obtained and were stained by masson's trichrome for histological observation. Results: Overall results were uneventful without any defect exposure or inflammation. The amount of new bone formation and bone maturity increased with increase in healing period at both groups. New bone in test group was mostly formed along the material particle surrounded by osteoblasts, and observation of osteoblastic stream was also present. Bone maturity increased as it was closer to thedefect margins. Under the same healing period, the test group showed more bone formation than the control group with more stable bovine bone particles remaining even after 48 weeks, whereas considerable resorption took place in BCP. Almost total defect closure was observed in test group with new bone formation in the central part of the defect. However, limited new bone formation was observed in the control group. Conclusion: Within the limits of the study, the present study reveals the newly developed BCP to be a good osteoconductive material. However, further studies are needed to be conducted in a different study model with a larger sample size.

Vulcanization and Mechanical Properties of High Molecular Weight Slyrene-Butadiene Rubber/Low Molecular weight Styrene-Butadiene Rubber Mixtures (고분자량 스티렌-부타디엔 고무와 저분자량 스티렌-부타디엔 고무 혼합물의 가황과 기계적 물성)

  • Lee, Hwa-Woo;Kim, Byeong-Cheol;Hong, Suk-Pyo;Lee, Dai-Soo
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.121-127
    • /
    • 1999
  • Characteristics of high molecular weight styrene-butadiene rubber(HM-SBR)/low molecular weight styrene-butadiene rubber(LM-SBR) mixtures were studied to investigate how to modify the processability and the mechanical properties of styrene-butadiene rubber (SBR). Mooney viscosity of the HM-SBR/LM-SBR mixtures and torque increase due to the vulcanization decreased by increasing the LM-SBR content of the mixtures. Shore A hardness and rebound properties were decreased by increasing the LM-SBR content of the mixtures. It was found that the value of tan ${\delta}$ of the mixtures in rubbery state was increased, while glass transition temperatures of the vulcanized blends were constant by increasing the LM-SBR content of the mixtures. It was postulated that the decrease of Mooney viscosity by increasing the LM-SBR content of the blends was due to plasticizing effects of the LM-SBR and the increased polydispersity of the mixtures. Change of mechanical properties of the vulcanized HM-SBR/LM-SBR mixtures was attributed to the decreased crosslink densities of the mixtures by increasing the LM-SBR content of the mixtures.

  • PDF

Adipic Acid Assisted Sol-Gel Synthesis of Li1+x(Mn0.4Ni0.4Fe0.2)1-xO2 (0 < x < 0.3) as Cathode Materials for Lithium Ion Batteries

  • Karthikeyan, Kaliyappan;Amaresh, Samuthirapandian;Son, Ju-Nam;Kim, Shin-Ho;Kim, Min-Chul;Kim, Kwang-Jin;Lee, Sol-Nip;Lee, Yun-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • Layered $Li_{1+x}(Mn_{0.4}Ni_{0.4}Fe_{0.2})_{1-x}O_2$ (0 < x < 0.3) solid solutions were synthesized using solgel method with adipic acid as chelating agent. Structural and electrochemical properties of the prepared powders were examined by means of X-ray diffraction, Scanning electron microscopy and galvanostatic charge/discharge cycling. All powders had a phase-pure layered structure with $R\bar{3}m$ space group. The morphological studies confirmed that the size of the particles increased at higher x content. The charge-discharge profiles of the solid solution against lithium using 1 M $LiPF_6$ in EC/DMC as electrolyte revealed that the discharge capacity increases with increasing lithium content at the 3a sites. Among the cells, $Li_{1.2}(Mn_{0.32}Ni_{0.32}Fe_{0.16})O_2$ (x = 0.2)/$Li^+$ exhibits a good electrochemical property with maximum initial capacity of 160 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ current density and the capacity retention after 25 cycles was 92%. Whereas, the cell fabricated with x = 0.3 sample showed continuous capacity fading due to the formation of spinel like structure during the subsequent cycling. The preparation of solid solutions based on $LiNiO_2-LiFeO_2-Li_2MnO_3$ has improved the properties of its end members.

Engineering Characteristics of Cement Milk for Bored Piles (매입말뚝공법의 충전재료로 사용되는 시멘트밀크의 공학적 특성)

  • Do, Jong-Nam;Nam, Moon-Seok;Shim, Jae-Won;Park, Young-Ho;Lee, Seung-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.29-43
    • /
    • 2015
  • In this study, engineering property tests were conducted for cement milk used as a filling materials in the bored piles method. For this purpose, various water/cement ratio specimens were produced on the basis of standard specimen specified in highway corporation specifications. The unconfined compressive strength, point load strength, elasticity modulus, poisson's ratio test was performed according to the age. As a test result, injection height for productions of cement milk specimens was defined ratios. Correlation coefficient K of the unconfined compressive strength and point load strength were $K_7=4.55{\sim}13.65$ in age 7 days, and $K_{28}=5.28{\sim}16.84$ in age 28 days. When water / cement ratio is 65-150%, the elastic modulus and Poisson's ratio significantly increased and decreased regardless of age. In addition, the formulae were proposed for unconfined compressive strength, point load strength, a correlation coefficient of unconfined compressive strength, point load strength, elastic modulus, and poisson's ratio for each age.

The Safety and Usefulness of Synthetic Absorbable Monofilament, Glycoside-$\varepsilon$-caprolactonetrimethylene Carbonate Interpolymer, in Gastrointestinal Anastomosis and Closure (위장관문합 및 봉합 시 인공 흡수성 단사인 Glycoside-$\varepsilon$- caprolactone-trimethylene Carbonate 혼성중합체의 안정성 및 유용성)

  • Lee Hyuk-Joon;Kim Yoon Ho;Yang Han-Kwang;Lee Kuhn Uk;Choe Kuk Jin
    • Journal of Gastric Cancer
    • /
    • v.3 no.2
    • /
    • pp.93-96
    • /
    • 2003
  • Purpose: Synthetic absorbable monofilaments offer excellent glide characteristics and cause minimal tissue trauma as a result of their smooth monofilament structure and gradual absorption within the healing tissues. For these reasons, these suture materials are commonly used in various surgical fields such as gastroenterology, urology, gynecology, and plastic surgery. The aim of this study was to evaluate the safety and usefulness of a new synthetic absorbable monofilament, Glycoside-..-caprolactone-trimethylene carbonate interpolymer (GCT), in gastrointestinal anastomosis and closure. Materials and Methods: We evaluated 55 gastrointestinal anastomoses and closures using GCT $MONOSYN^{R}$, B. Braun, Germany) in 47 patients who underwent gastric surgery between December 2001 and May 2002 at Seoul National University Hospital. Patient's characteristics, operative procedure, surgeon's opinion of handling properties of GCT, and suture-related complications were analyzed. Results: There were 34 males and 13 females (M:F= 2.6:1) with an average age of 54.2 years old. Forty-five cases of gastrointestinal anastomosis (20 gastrojejunostomies and 25 jejunojejunostomies) and 10 cases of intestinal closure (7 gastrostomy closures and 3 duodenal stump closures) were performed in 41 cases of stomach cancer, three of peptic ulcer disease, two of GIST, and one MALToma. The handling properties of GCT according to the criteria of knot breaking load, knot security, and placing property were always scored with 7 to 9 points (10=excellent, 1=very poor). Two cases of postoperative complications ($3.6\%$) were noted. One was a leak of the gastrojejunostomy site which was successfully managed conservatively, and the other was a stricture of the gastrojejunostomy site which was managed by reoperation (side-to-side jejunojejunostomy). Conclusion: GCT seems to be an applicable suture material for various gastrointestinal anastomoses and closures.

  • PDF

Investigation of the influence of substrate surface on the ZnO nanostructures growth (기판 표면의 영향에 의한 ZnO 나노 구조 성장에 관한 연구)

  • Ha, Seon-Yeo;Jung, Mi-Na;Park, Seung-Hwan;Yang, Min;Kim, Hong-Seung;Lee, Uk-Hyeon;Yao, Takafumi;Jang, Ji-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1022-1025
    • /
    • 2005
  • The effect of substrate surface to the formation of ZnO nanostructures has been investigated using Si (111), $Al_2O_3$(C-plane) $Al_2O_3$(A-plane), and $Al_2O_3$(R-plane) substrates. The growth temperature was controlled from 500$^{\circ}C$ ${\sim}$ 600$^{\circ}C$, and the luminescence properties were investigated by a series of photoluminescence (PL) measurements at the elevating temperatures. ZnO nanostructures grown on Si substrate show strong UV emission intensity along with green emission positioned at 3.22 eV and 2.5 eV, respectively. However, green emission was not observed from the ZnO nanostructures grown on $Al_2O_3$ substrates. It is explained in terms of the difference of the surface energy between Si and $Al_2O_3$. Also, the origin of UV emissions has been discussed by using the temperature-dependent PL. The distinction of the PL spectra is interpreted in terms of the difference of the impurity included in the nanostructures.

  • PDF

Property Changes of Ni-Co Film with the Change of Co Concentration in Sulfamate-chloride Bath (Sulfamate-Chloride Bath에서 Co 농도의 변화에 따른 Ni-Co 필름의 특성 변화)

  • Yoon, Pilgeun;Park, Deok-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Sulfamate-chloride baths were fabricated to study the properties of the electrodeposited Ni and NiCo thin films. The dependences of current efficiency, deposit composition of Ni and Co, residual stress, surface morphology and microstructure of electrodeposited Ni and NiCo thin films on CoCl2 concentration in sulfamate-chloride baths were investigated. The current efficiency was measured to be more than about 90%, independent of the changes of CoCl2 concentration in the baths. Residual stress of Ni and NiCo thin films was increased from about 45 to about 250 MPa with varying CoCl2 concentration from 0 to 0.210 M CoCl2 in the baths and then reached to a plateau, about 250 MPa above 0.420 M CoCl2 concentration. Nodular surface morphologies were observed at most CoCl2 concentrations in the baths except 0.210 M. NiCo thin film electrodeposited from the bath with 0.210 M CoCl2 concentration showed an acicular surface morphology. Pure Ni thin film consists of FCC(111), FCC(200), FCC(220), and FCC(311) peaks without any preferred orientation. On the other hand NiCo thin films make up of HCP(100), FCC(111), HCP(101), FCC(200), FCC(220) or HCP(110), FCC(311) or HCP(112) and FCC(222) peaks. It was revealed from the analysis of XRD result that FCC(111) peak at the NiCo thin film electrodeposited from the bath with 0.084 M CoCl2 concentration can be regarded as the preferred orientation. However the peak of the preferred orientation was changed to FCC(220) or HCP(110) above 0.084 M CoCl2 concentration in the baths. Then the intensity of FCC(220) or HCP(110) peak was gradually decreased with increasing CoCl2 concentration further. The crystalline size of pure Ni thin film was observed to be about 53 ㎛ and those of NiCo thin films were in the range of 35~45 ㎛.

The Properties and Production of Hand-Made Paper Made from Various Plant Fibers (식물섬유 수초지의 제조와 물성에 대한 연구)

  • Lee, Hye-Ja;Lim, Hee-Jung;Bae, Hyun-Young;Mo, Tae-Wha;Yoo, Hye-Ja;Han, Young-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.9
    • /
    • pp.1366-1375
    • /
    • 2008
  • This studies were carried out in order to develope environmentally-friendly fiber materials and substitute resources of Paper mulberry. Various plant fibers such as New Zealand flax, Indian mallow, Kuzu vine and Yucca were used as raw materials of hand-made papers. We rotted these 4 kinds of plant fibers and removed non-cellulose. After rotting, the pulping rate(%) and the length of fibers in pulps were measured. The physical characteristics of papers made of various plants fiber were investigated and the probabilities of practical use were considered. The results were as follow: The non-cellulose contents of plant fibers were $30{\sim}40%$ and those contents must be lower down to 8% to be able to manufacture the hand made papers. The lignin in pulps were removed almost and the hemicellulose were partially removed to reach up to appropriate level of the pulp rates and fiber lengths. The more hemicellulose removed, the finer fiber thickness were and rapidly the lower Hanji tensile strength were. But the tear strength of these plants of hand-made papers do not decreased so much as tensile strength. So the property of 4 types of plant fibers might be of great advantages to make hand-made papers. Both tensile and tear strengths of Hanji of New Zealand flax, Indian mallow, Kuzu vine and Yucca were higher than Paper mulberry hand-made paper. When 30% of mulberry paper were mixed, the mixing effect showed maximum. Because of the functions of all plant fiber hand-made papers showed better than those of Paper mulberry hand-made paper, 4 types of plant fibers could be substitute Paper mulberry.

A Study on the Effects Plastics have on the Product Designs through the Development of Plastic Materials - On & Around the Streamline favored by the Generation 1920-30'th - (플라스틱의 개발이 제품 디자인에 미친 영향에 관한 연구 - 1920-30년대 유선형을 중심으로 -)

  • Lee, Ok-Bun
    • Archives of design research
    • /
    • v.19 no.2 s.64
    • /
    • pp.283-292
    • /
    • 2006
  • The Plastic material had been developed in the middle of the 19th century as an alternative material. Along with the development of the electrical engineering industry, it cropped up into center stage as an effective material and has increasingly expanded its use. As such, the plastic material has bound deep-seated ties with the design activities of industrial products, coming into the main material for a variety of industrial designs. Despite its dose affinity to design function in terms of its materialistic property, we have rarely seen examples of intensive study on the realtionship between plastics and designs. This study aims to find the importance that the substance affects industrial products in designs along with the development of plastic materials. With the objective in mind, we made a review of the streamline stylishness that had flourished in the twenties and thirties of the 19th century. Through this study, we understand that the plastic material has a close realtionshop with design activities in three different aspects. First, its amorphous state of nature makes it possible to change into any shape one desires in plastic surgery, which feature in turn influences the moulding of any design forms. Second, the plastic material is best suited to mass-manufacture, which induces to reduce the cost of production. Hence, the expansion of design industry. Third, the plastic material allows the multiple variety of colors, sensitivity, gloss and patterns and infinitely large possibility ranging from natural senses to human senses with the result that numberless diversity of designs cdould come into being.

  • PDF