• Title/Summary/Keyword: Materials property

Search Result 4,161, Processing Time 0.033 seconds

Micromechanical Finite Element Analysis and Effective Material Property Evaluation of Composite Materials (미시역학을 고려한 복합재료의 유한요소해석 및 유효 물성치 평가)

  • 이승표;정재연;하성규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.220-223
    • /
    • 2003
  • The methodology of micromechanical finite element method (MFEM) is proposed to calculate the micromechanical strains on fiber and matrix under mechanical and thermal loadings. For micromechanical analysis, composite structure is idealized the square and hexagonal unit cells. Boundary conditions are determined to calculate the effective material properties of composites and the strain magnification matrix. And they are verified by comparing with the results from multi cells, and the strain distributions of the unit cells are in accordance with those of the multi cells. Finally, the effective material properties of composite structure are obtained with respect to its fiber volume fraction and compared with results from rules-of-mixture.

  • PDF

Evaluation of Stress-Strain Characteristics of Weldment in Natural Gas Pipeline Using Advanced Indentation System (Advanced Indentation System을 이용한 천연가스배관 용접열영향부의 응력-변형률 변화 특성 분석)

  • Jang, Jae-Il;Son, Dong-Il;Kwon, Dong-Il;Kim, Woo-Sik;Park, Joo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.483-488
    • /
    • 2001
  • Until now, the tensile properties of materials can be obtained just in accordance with conventional tensile testing methods which are described in several standards such as ASTM (American Society for Testing and Materials) standard and BS (British Standard). For some cases including on-service facility materials, however, the standard testing methods cannot be applicable due to the destructive testing procedure and specimen size requirement. Therefore, simple, non-destructive and advanced indentation technique was proposed. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. In this paper, the research trend of non-destructive evaluation of tensile properties using AIS (advanced indentation system) and its application fields are reviewed and discussed.

  • PDF

A Study On the Property and Influence Factor in Measuring of the Dynamic Stiffness of Damping Materials (바닥충격음 완충재의 동탄성계수 특성 및 측정 영향인자)

  • Kim, Kyoung-Woo;Choi, Hyon-Jung;Kang, Jae-Sik;Yang, Kwan-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1256-1259
    • /
    • 2006
  • The purpose of this study was to investigate the current status and influence factor in measuring the dynamic stiffness of damping materials. The property of the dynamic stiffness of damping materials was tested and analysed in condition such as the size of test samples and the change of relative humidity in heating chamber. Test results showed that the dynamic stiffness of after-heating was lower than that of before-heating in most samples and the change of relative humidity in heating chamber got little influence of the dynamic stiffness. The resonant frequency of test sample decreased $2{\sim}7Hz$ as the decrease of the size of sample. Because it was increased that total mass per unit area of sample, the change of dynamic stiffness had little influence.

  • PDF

Preparation and characterization of zirconium nitride and hydroxyapatite layered coatings for biomedical applications

  • Nathanael, A. Joseph;Lee, Jun-Hui;Hong, Sun-Ik
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.102.2-102.2
    • /
    • 2012
  • Different layers of zirconium nitride (ZrN) and hydroxyapatite (HA) coatings were prepared on cp Ti substrate for biomedical applications. The main idea is to improve the mechanical strength as well as the biocompatibility of the coating. ZrN is known for its high mechanical strength, corrosion resistance. HA is well known for its biocompatibility properties. Hence, in this study, both materials were coated on a cp Ti substrate with bottom layer with ZrN for good bonding with substrate and the top layer with HA for induce bioactivity. Middle layer was formed by a composite of HA and ZrN. Detail analyses of the layered coatings for its structural, morphological, topographical properties were carried out. Then the mechanical property of the layered coatings was analyzed by nanoindentation. Biomimetic growths of apatite on the functionally graded coatings were determined by simulated body fluid method. This study provides promising results to use this kind of coatings in biomedical field.

  • PDF

Electrochemical Property Measurement on Flyacenic Semiconductor(PAS) (PAS 전극에 관한 전기화학적 특성 측정)

  • 김한주;박수길;손원근;이홍기;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.197-200
    • /
    • 1999
  • The polyacene materials prepared from phenol resine at relatively low temperature(550~75$0^{\circ}C$) show a highly Li-doped state up to $C_2$Li state without liberation of Li cluster. We prepared each polyacenic materials various temperature and investigated electrochemical property. We tried to change the mole ratio of [H]/[C] that was 0.24~0.4 range and finally found that the further discussion of improvements of battery materials. The X-ray structural analyses have shown that this material is essentiallly amorphous with loose structure in molecular size order. This structure ensures that the PAS battery has both reliability on repetitive doping-undoping processes and higher energy density than other batteries. The PAS electrode has been confirmed to show good stability and reversibility.

  • PDF

Study on the magnetic porcelain materials (자성을 나타내는 도자기 소지의 연구)

  • Cho, Tae-Sik;Kim, Ji-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.88-91
    • /
    • 2003
  • The magnetic porcelain materials were studied by using the porcelain materials added Sr-ferrite powders before forming and firing process. For the high magnetic property, the Sr-ferrite magnetic powders with the grain size of 1 ${\mu}m$ were agglomerated the powder size of about 1 mm. The magnetic porcelain with 30 wt% of Sr-ferrite powders indicated the magnetic characteristics such as the remanent flux density of 240 G and the intrinsic coercivity of 3910 Oe, at the firing conditions of $1250^{\circ}C$/1hr in air.

  • PDF

Effect of Magnetic Property Modification on Current-Induced Magnetization Switching with Perpendicular Magnetic Layers and Polarization-Enhancement Layers

  • Kim, Woo-Jin;Lee, Kyung-Jin;Lee, Taek-Dong
    • Journal of Magnetics
    • /
    • v.14 no.3
    • /
    • pp.104-107
    • /
    • 2009
  • The effects of the magnetic property variation on current-induced magnetization switching in magnetic tunnel junction with perpendicular magnetic anistoropy (PMA) and the soft magnetic polarization-enhancement layers (PELs) inserted between the layers with PMA and the MgO layer was studied. A micromatnetic model was used to estimate the switching time of the free layer by different applied current densities, with changing saturation magnetization ($M_s$) of the PELs, interlayer exchange coupling between PMA layers and PELs. The switching time could be significantly reduced at low current densities, by increasing $M_s$ of PELs and decreasing interlayer exchange coupling.

The Effect of Surface Modification with La-M-O (M = Ni, Li) on Electrochemical Performances of Li[Ni0.8Co0.15Al0.05]O2 Cathode

  • Ryu, Jea-Hyeok;Kim, Seuk-Buom;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.657-660
    • /
    • 2009
  • The surface of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ cathode particle was modified by lanthanum based oxide to improve electrochemical property and thermal stability. The XRD pattern of surface layer was indexed with that of $La_4NiLiO_8$. The discharge capacity of modified electrode was higher than that of pristine sample, specially at fast charge-discharge rate and high cut-off voltage. In the DSC profile of the charged sample, the generation of heat by exothermic reaction was decreased by surface modification. Such enhancement may by attributed to the presence of stable lanthanum based oxide, which effectively suppressd the reaction between electrode and electrolyte on the surface of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ electrode.

Improvement of Electrical Property and Stability of Silver Nanowire Transparent Electrode Via Ion-beam Treatment (이온빔 처리를 통한 은나노와이어 전극의 전기적 특성과 안정성 향상)

  • Jung, Sunghoon;Lee, Seunghun;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.455-459
    • /
    • 2017
  • The development of flexible transparent electrode has been paid attention for flexible electronics. In this study, we have developed transparent electrode based on silver nanowires with improved electrical property and stability through ion-beam treatment. The energetic particles of ion-beam could sinter junctions of each silver nanowires and etch out polyvinylpyrollidone(PVP) coated on silver nanowires. The sheet resistance of silver nanowire transparent electrode was reduced by 74%, and the resistance uniformity was increased about 3 times after exposure of ion beam. Moreover, the stability at $85^{\circ}C$ of temperature and 85% of relative humidity could be also improved.

Luminescence property of Eu2+ in SiO2-Al2O3 glass phosphor

  • Chae, Ki Woong;Lee, Kyoung-Ho;Cheon, Chae Il;Cho, Nam In;Kim, Jeong Seog
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.189-192
    • /
    • 2012
  • Manufacturing process for silicate glass phosphors containing Eu2+ activator and their photoluminescence property have been studied. We adopted powder sintering process instead of traditional glass melting process for making glass phosphor. At first, phosphor powders were synthesized at 1200 ℃ for 2-3 hours under a reducing atmosphere with 10% H2-90% N2 gas mixture. The reduced powders were compacted into discs and then the discs weresintered at 1400 ~ 1500 ℃ for 1 hr under a reducing atmosphere of 5H2-95% N2. The enhancement of PL intensity by Al2O3 addition, XPS binding energy shift of Si 2p and O 1s, sintering shrinkage, and crystallization were characterized.