• Title/Summary/Keyword: Materials Degradation Mechanism

Search Result 134, Processing Time 0.025 seconds

Aging Mechanisms of Lithium-ion Batteries

  • Jangwhan Seok;Wontae Lee;Hyunbeom Lee;Sangbin Park;Chanyou Chung;Sunhyun Hwang;Won-Sub Yoon
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.51-66
    • /
    • 2024
  • Modern society is making numerous efforts to reduce reliance on carbon-based energy systems. A notable solution in this transition is the adoption of lithium-ion batteries (LIBs) as potent energy sources, owing to their high energy and power densities. Driven by growing environmental challenges, the application scope of LIBs has expanded from their initial prevalence in portable electronic devices to include electric vehicles (EVs) and energy storage systems (ESSs). Accordingly, LIBs must exhibit long-lasting cyclability and high energy storage capacities to facilitate prolonged device usage, thereby offering a potential alternative to conventional sources like fossil fuels. Enhancing the durability of LIBs hinges on a comprehensive understanding of the reasons behind their performance decline. Therefore, comprehending the degradation mechanism, which includes detrimental chemical and mechanical phenomena in the components of LIBs, is an essential step in resolving cycle life issues. The LIB systems presently being commercialized and developed predominantly employ graphite anode and layered oxide cathode materials. A significant portion of the degradation process in LIB systems takes place during the electrochemical reactions involving these electrodes. In this review, we explore and organize the aging mechanisms of LIBs, especially those with graphite anodes and layered oxide cathodes.

Photocatalytic Degradation of Rhodamine B Using Carbon-Doped Carbon Nitride under Visible Light

  • Wang, Zhong-Li;Zhang, Zai-Teng;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.279-284
    • /
    • 2020
  • In this work, a carbon-doped carbon nitride photocatalyst is successfully synthesized through a simple centrifugal spinning method after heat treatment. The morphology and properties of the prepared photo catalyst are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectrophotometer (UV-vis), and specific surface area. The results show that the band gap of the prepared sample, g-CN-10 is 2.1 eV, is significantly lower than that of pure carbon nitride, 2.7 eV. As the amount of cotton candy increased, the absorption capacity of the prepared catalyst for visible light is significantly enhanced. In addition, the degradation efficiency of Rhodamine B (RhB) by sample g-CN-10 is 98.8 % over 2 h, which is twice that value of pure carbon nitride. The enhancement of photocatalytic ability is attributed to the increase of specific surface area after the carbon doping modifies carbon nitride. A possible photocatalytic degradation mechanism of carbon-doped carbon nitride is also suggested.

Degradation in Steels: Transformation Plasticity

  • Cho, Yi-Gil;Han, Heung-Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Super-plastic deformation that originates from transformation plasticity has favorable aspects for steels with improved strength and ductility. However, it also causes undesirable deformation of products or specimens, leading to their degradation. This article reviews recent investigations of transformation plasticity. A combination of newly suggested models, numerical analyses, and novel experiments has attempted to reveal the mechanism. Since the nature of the transformation plasticity is still unclear, there are significant challenges still to be solved. Fundamental understanding of transformation plasticity will be essential for the development of advanced steels.

Study on UV degradation in Polymeric Insulating Materials for Use in Outdoor Insulators by Corona-Charging (코로나 대전을 통한 옥외용 고분자 절연재료의 자외선 열화특성 연구)

  • Youn, Bok-Hee;An, Jong-Sik;Lee, Sang-Yong;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.106-109
    • /
    • 2001
  • In this paper, we have investigated the degradation of shed materials of outdoor insulators by UV-radiation by using corona-charging and XPS analysis. The accumulated charges on polymeric surface having intrinsic hydrophobic property have a negative impact on retaining its hydrophobicity. Therefore, shorter decay times of surface charges are preferred. The surface voltage decay on UV-treated silicone rubber and EPDM show a different decay trend with UV treated time. From the XPS analysis, the oxidized groups of silica-like structure in silicone rubber increase with UV treatment time. For EPDM, the oxidized carbon groups of C=O, O=C-O increase as elapse of UV radiation time. These oxidized surface for each material have different electrostatic characteristics, so deposited charges may be expected to have different impacts on their surface hydrophobicity. The degradation mechanism based on our results is discussed.

  • PDF

Tracing Resistances of Anion Exchange Membrane Water Electrolyzer during Long-term Stability Tests

  • Niaz, Atif Khan;Lee, Woong;Yang, SeungCheol;Lim, Hyung-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.358-364
    • /
    • 2021
  • In this study, an anion exchange membrane water electrolysis (AEMWE) cell was operated for ~1000 h at a voltage bias of 1.95 V. Impedance spectra were regularly measured every ~ 100 h, and changes in the ohmic and non-ohmic resistance were traced as a function of time. While there was relatively little change in the I-V curves and the total cell resistance during the long-term test, we observed various electrochemical phenomena in the cell: 1) initial activation with a decrease in both ohmic and non-ohmic resistance; 2) momentary and non-permanent bubble resistance (non-ohmic resistance) depending on the voltage bias, and 3) membrane degradation with a slight increase in the ohmic resistance. Thus, the regular test protocol used in this study provided clear insights into the performance degradation (or improvement) mechanism of AEMWE cells.

A Review on the Failure Mechanism for Crystalline Silicon PV Module (결정계 PV 모듈에 대한 고장 메커니즘 검토)

  • Kim, Jeong-Yeon;Kim, Ju-Hee;Chan, Sung-Il;Lim, Dong-Gun;Kim, Yang-Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.343-349
    • /
    • 2014
  • It is summarized that potential causes of performance degradations and failure mechanisms of crystalline silicon photovoltaic (PV) modules installed in Middle East area. In addition, we also reviewed current PV module qualification test (IEC 61215) and the methods for detection of wear-out fault. The failure of PV modules in the extreme environmental conditions such as deserts is mainly due to high temperature, humidity, and dust storms. In particular, cementation phenomenon caused by combination of sand and moisture leads to rapid degradation in the performance of PV modules. In order to evaluate and guarantee the long term reliability of PV modules, specific qualification tests such as sand dust test, salt mist test and potential induce degradation test considering operating environment of PV module should be carried out.

Evaluation of Degradation of 2.25Cr-1Mo Materials using the Nonlinear Acoustic Effect (초음파 비선형성을 이용한 2.25Cr-1Mo 강의 열화도 평가)

  • Choi, Yun-Ho;Kim, Hyun-Mook;Jhang, Kyung-Young;Park, Ik-Keun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.222-227
    • /
    • 2001
  • Nonlinear acoustic effect has been considered as an effective tool for the evaluation of material degradation. In this paper, the applicability of nonlinear acoustic effect to the evaluation of degradation of 2.25Cr-1Mo steel is investigated. Firstly, a number of 2.25Cr-1Mo steel samples were heat-treated, and their damage mechanism was examined. Secondly, Ultrasonic nonlinear parameter was measured. Nonlinear acoustic parameter was found to be clearly sensitive to the material degradation.

  • PDF

Electroluminescent Characteristics of Fluorescent OLED with Alternating Current Forward Bias (교류 순방향 바이어스에 따른 형광 OLED의 전계 발광 특성)

  • Seo, Jung-Hyun;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.398-404
    • /
    • 2017
  • In order to study the AC driving mechanism for OLED lighting, the fluorescent OLEDs were fabricated and the electroluminescent characteristics of the OLEDs by AC forward bias were analyzed. In the case of the driving method of OLED by AC forward bias under the same voltage and the same current density, degradation of luminescent characteristics for elapsed time progressed faster than in the case of the driving method by DC bias. These phenomena were caused by the peak voltage of AC forward bias which is ${\sqrt{2}}$ times higher than the DC voltage. In addition, the degradation of the OLED was accelerated because the AC forward bias had come close to the upper limit of the allowable voltage range even though the peak voltage didn't exceed the allowable range of the OLED. However, the fabricated fluorescent OLED showed little degradation of OLED characteristics due to AC forward bias from 0 V to 6.04 V. Therefore, OLED lighting by AC driving will become commercialized if sufficient luminance is realized at a voltage at which the characteristics of the OLED are not degradation by the AC driving method.

Characterizing the ac-dc-ac Degradation of Aircraft and Vehicle Organic Coatings using Embedded Electrodes

  • Bierwagen, Gordon P.;Allahar, Kerry N.;Su, Quan;Victoria, Johnston-Gelling
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.261-268
    • /
    • 2007
  • Embedded sensors were used as an in-situcorrosion-sensing device for aircraft and vehicular structures protected by organic coatings. Results are presented changes associated with a standard Airforce aircraft coating and a standard Army vehicle coating were monitored by embedded sensors. These coatings consisted of a polyurethane topcoat and an epoxy primer, however are formulated to provide different characteristics. The ac-dc-ac testing method was used to accelerate the degradation of these coatings while being immersed in a NaCl medium. Electrochemical impedance spectroscopy and electrochemical noise measurement experiments were used to monitor the induced changes. A comparison of the results between coatings subjected to the ac-dc-ac exposure and coatings subjected to only constant immersion in the NaCl medium is presented. The results were used to demonstrate the effectiveness of the ac-dc-ac method at accelerating the degradation of an organic coating without observably changing the normal mechanism of degradation. The data highlights the different features of the coating systems and tracks them while the coating is being degraded. The aircraft coating was characterized by a high-resistant topcoat that can mask corrosion/primer degradation at the primer/substrate interface whereas the vehicle coating was characterized by a low-resistant topcoat with an effective corrosion inhibiting primer. Details of the ac-dc-ac degradation were evaluated by using an equivalent circuit to help interpret the electrochemical impedance data.

A Study on Electrochemical Evaluation Method of Toughness Degradation for 12%Cr Steel (II) (12%Cr강 인성열화도의 전기화학적 평가법에 대한 연구(II))

  • Kim, Chang-Hui;Seo, Hyun-Uk;Yoon, Kee-Bong;Park, Ki-Sung;Kim, Seoung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.268-273
    • /
    • 2001
  • Fossil power plants operated in high temperature condition are composed of components such as turbine, boiler, and piping system. Among these components, turbine blades made with 12%Cr steel operate at a temperature above $500^{\circ}C$. Due to the long term service, turbine blades experience material degradation manifested by change in mechanical and microstructural properties. The need to make life assessment and to evaluate material degradation of turbine blade is strongly required but in reality, there is a lack of knowledge in defining failure mechanism and fundamental data for this component. Therefore, in making life assessment of turbine blade, evaluation of material degradation must be a priority. For this purpose, evaluation of toughness degradation is very important. The major cause of toughness degradation in 12Cr turbine blade is reported to be critical corrosion pitting induced by segregation of impurity elements(P etc.), coarsening of carbide, and corrosion, but the of materials for in-service application. In this study, the purpose of research is focused on evaluating toughness degradation with respect to operation time for 12%Cr steel turbine blade under high temperature steam environment and quantitatively detecting the degradation properties which is the cause of toughness degradation by means of non-destructive method, electrochemical polarization.

  • PDF