DOI QR코드

DOI QR Code

Tracing Resistances of Anion Exchange Membrane Water Electrolyzer during Long-term Stability Tests

  • Niaz, Atif Khan (School of Materials Science and Engineering, Changwon National University) ;
  • Lee, Woong (School of Materials Science and Engineering, Changwon National University) ;
  • Yang, SeungCheol (School of Materials Science and Engineering, Changwon National University) ;
  • Lim, Hyung-Tae (School of Materials Science and Engineering, Changwon National University)
  • Received : 2021.01.21
  • Accepted : 2021.03.03
  • Published : 2021.08.28

Abstract

In this study, an anion exchange membrane water electrolysis (AEMWE) cell was operated for ~1000 h at a voltage bias of 1.95 V. Impedance spectra were regularly measured every ~ 100 h, and changes in the ohmic and non-ohmic resistance were traced as a function of time. While there was relatively little change in the I-V curves and the total cell resistance during the long-term test, we observed various electrochemical phenomena in the cell: 1) initial activation with a decrease in both ohmic and non-ohmic resistance; 2) momentary and non-permanent bubble resistance (non-ohmic resistance) depending on the voltage bias, and 3) membrane degradation with a slight increase in the ohmic resistance. Thus, the regular test protocol used in this study provided clear insights into the performance degradation (or improvement) mechanism of AEMWE cells.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20173010140890). This research was also supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) grant funded by the Korean government (Ministry of Science and ICT) (2017M1A2A2045018).

References

  1. Z. Abdin, W. Merida, Energy Convers. Manag., 2019, 1961 1068-79.
  2. C. Acar, I. Dincer, J. Clean Prod., 2019, 218, 835-49. https://doi.org/10.1016/j.jclepro.2019.02.046
  3. El-Emam RS, Ozcan H, J. Clean Prod., 2019, 220, 593-609. https://doi.org/10.1016/j.jclepro.2019.01.309
  4. S.E. Hosseini, M.A. Wahid, Renew. Sust. Energ. Rev.., 2016, 57, 850-66. https://doi.org/10.1016/j.rser.2015.12.112
  5. L. Al-Ghussain, Environ. Prog. Sustain. Energy., 2019, 38(1), 13-21. https://doi.org/10.1002/ep.13041
  6. J. Wang, Y. Gao, H. Kong, J. Kim, S. Choi, F. Ciucci, Y. Hao, S. Yang, Z. Shao, J. Lim, Chem. Soc. Rev., 2020, 49, 9154-9196. https://doi.org/10.1039/D0CS00575D
  7. B. Zayat, D. Mitra, S.R. Narayanan, Inexpensive and Efficient Alkaline Water Electrolyzer with Robust SteelBased Electrodes. J. Electrochem. Soc., 2020, 167(11), 114513.
  8. J. Chi, H. Yu, Water electrolysis based on renewable energy for hydrogen production, Chinese J. Catal., 2018, 39(3), 390-394. https://doi.org/10.1016/S1872-2067(17)62949-8
  9. C.C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, M. Comotti, Angew. Chem., Int. Ed., 2014, 53(5), 1378 -1381. https://doi.org/10.1002/anie.201308099
  10. M.S. Naughton, F.R. Brushett, P.J. Kenis, Carbonate resilience of flowing electrolyte-based alkaline fuel cells, J. Power Sources., 2011, 196(4), 1762-1768. https://doi.org/10.1016/j.jpowsour.2010.09.114
  11. Y. Leng, G. Chen, A.J. Mendoza, T.B. Tighe, M.A. Hickner, C.Y Wang, J. Am. Chem. Soc., 2013, 134(22), 9054-9057. https://doi.org/10.1021/ja302439z
  12. M. Carmo, D.L. Fritz, J. Mergel, Int. J. Hydrog. Energy., 2013, 38(12), 4901-4934. https://doi.org/10.1016/j.ijhydene.2013.01.151
  13. S. Seetharaman, S.C. Raghu, K.A, J. Energy chem., 2016, 25(1), 77-84. https://doi.org/10.1016/j.jechem.2015.08.010
  14. Y. Li, H. Wang, C. Priest, S. Li, P. Xu, G. Wu, Adv. Mater., 2020, 33(6), 2000381.
  15. I.V. Pushkareva, A.S. Pushkarev, S.A. Grigoriev, P. Modisha, D.G. Bessarabov, Int. J. Hydrog Energy., 2020, 45(49), 26070-26079. https://doi.org/10.1016/j.ijhydene.2019.11.011
  16. H. A. Miller, K. Bouzek, J. Hnat, S. Loos, C. I. Bernacker, T. Weissgarber, L. Rontzsch, J. Meier-Haack, Sustain. Energy Fuels., 2020, 4(5), 2114-2133. https://doi.org/10.1039/C9SE01240K
  17. P. Fortin, T. Khoza , X. Cao, S.Y. Martinsen , A.O. Barnett, S. Holdcroft, J. Power Sources., 2020, 451, 227814. https://doi.org/10.1016/j.jpowsour.2020.227814
  18. Z. Liu, S.D. Sajjad, Y. Gao, H. Yang, J.J. Kaczur, R.I. Masel, The effect of membrane on an alkaline water electrolyzer, Int. J. Hydrog Energy., 2017, 42(50), 29661-29665. https://doi.org/10.1016/j.ijhydene.2017.10.050
  19. L. Wang, T. Weissbach, R. Reissner, A. Ansar, A.S. Gago, S. Holdcroft, K.A.Friedrich, H, ACS Appl. Energy Mater., 2019, 2(11), 7903-7912. https://doi.org/10.1021/acsaem.9b01392
  20. D.Li, E. J. Park, W. Zhu, Q. Shi, Y. Zhou, H. Tian, Y. Lin, A. Serov, B. Zulevi, ED Baca, C. Fujimoto, Nat. Energy., 2020, 5(5), 378-385. https://doi.org/10.1038/s41560-020-0577-x
  21. I.Vincent, A. Kruger, D. Bessarabov, Int. J. Hydrog Energy., 2017, 42(16), 10752-10761. https://doi.org/10.1016/j.ijhydene.2017.03.069
  22. A. Carbone, S.C. Zingani, I. Gatto, S. Trocino, A.S. Arico, Int. J. Hydrog Energy., 2020, 45(16), 9285-9292. https://doi.org/10.1016/j.ijhydene.2020.01.150
  23. M.K. Cho, H-Y. Park, S. Choe, S.J. Yoo, J.Y. Kim, H-J. Kim, D. Henkensmeier, S.Y. Lee, Y.E. Sung, H.S. Park, J.H. Jang, J. Power Sources., 2017, 347, 283-290. https://doi.org/10.1016/j.jpowsour.2017.02.058
  24. M.K. Cho, H-Y. Park, H.J. Lee, H-J. Kim, A. Lim, D. Henkensmeier, S.J. Yoo, J.Y. Kim, S.Y. Lee, H.S. Park, J.H. Jang, J. Power Sources., 2018, 382, 22-29. https://doi.org/10.1016/j.jpowsour.2018.02.025
  25. A. Lim, H-J. Kim, D. Henkensmeier. S.J. Yoo, J.Y. Kim, S.Y. Lee, Y-E. Sung, J.H. Jang, H.S. Park, J Ind Eng Chem., 2019, 76, 410-418. https://doi.org/10.1016/j.jiec.2019.04.007
  26. A.K Niaz, A. Akhtar, J-Y. Park, H-T. Lim, J. Power Sources., 2021, 481, 229093. https://doi.org/10.1016/j.jpowsour.2020.229093
  27. V.B. Silva, A. Rouboa, J. Electroanal. Chem., 2012, 671, 58-66. https://doi.org/10.1016/j.jelechem.2012.02.013
  28. Z. Qi, A. Kaufman, J. Power Sources., 2003, 114(1), 21-31. https://doi.org/10.1016/S0378-7753(02)00587-6
  29. Z. Xu, Z. Qi, C. He, A. Kaufman, J. Power Sources., 2006, 156(2), 315-320. https://doi.org/10.1016/j.jpowsour.2005.05.072
  30. M. Boaventura, A. Mendes, Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes, Int. J. Hydrogen Energy., 2010, 35, 11649-11660. https://doi.org/10.1016/j.ijhydene.2010.03.137
  31. Y. Li, Z. Kang, J. Mo, G. Yang, S. Yu, D.A. Talley, B. Han, F.-Y. Zhang, Int. J. Hydrog Energy., 2018, 43(24), 11223-11233. https://doi.org/10.1016/j.ijhydene.2018.05.006
  32. K. Zeng, D. Zhang, Prog. Energy Combust. Sci., 2010, 36(3), 307-326. https://doi.org/10.1016/j.pecs.2009.11.002
  33. F. Razmjooei, A. Farooqui, R. Reissner, A. S. Gago, S.A. Ansar, K.A.Friedrich, ChemElectroChem., 2020, 7, 3951-3960. https://doi.org/10.1002/celc.202000605
  34. Y.Ye, Y.A. Elabd, Macromolecules., 2011, 44(21), 8494-8503. https://doi.org/10.1021/ma201864u
  35. D.R. Dekel, S. Willdorf, U. Ash, M. Amar, S. Pusara, S. Dhara, S. Srebnik, C. E. Diesendruck, J. Power Sources., 2018, 375, 351-360. https://doi.org/10.1016/j.jpowsour.2017.08.026
  36. J. Fan, S. Willdorf-Cohen, E. M. Schibli, Z. Paula, W. Li, T. J.G Skalski, A. T. Sergeenko, A. Hohenadel, B. J. Frisken, E. Magliocca, W.E. Mustain, C.E. Diesendruck, D.R Dekel, S. Holdcroft, Nat. Commun., 2019, 10(1), 1-10. https://doi.org/10.1038/s41467-018-07882-8