DOI QR코드

DOI QR Code

Aging Mechanisms of Lithium-ion Batteries

  • Jangwhan Seok (Department of Energy Science, Sungkyunkwan University) ;
  • Wontae Lee (Department of Energy Science, Sungkyunkwan University) ;
  • Hyunbeom Lee (Department of Energy Science, Sungkyunkwan University) ;
  • Sangbin Park (Department of Energy Science, Sungkyunkwan University) ;
  • Chanyou Chung (Department of Energy Science, Sungkyunkwan University) ;
  • Sunhyun Hwang (Department of Energy Science, Sungkyunkwan University) ;
  • Won-Sub Yoon (Department of Energy Science, Sungkyunkwan University)
  • Received : 2023.08.14
  • Accepted : 2023.10.04
  • Published : 2024.02.29

Abstract

Modern society is making numerous efforts to reduce reliance on carbon-based energy systems. A notable solution in this transition is the adoption of lithium-ion batteries (LIBs) as potent energy sources, owing to their high energy and power densities. Driven by growing environmental challenges, the application scope of LIBs has expanded from their initial prevalence in portable electronic devices to include electric vehicles (EVs) and energy storage systems (ESSs). Accordingly, LIBs must exhibit long-lasting cyclability and high energy storage capacities to facilitate prolonged device usage, thereby offering a potential alternative to conventional sources like fossil fuels. Enhancing the durability of LIBs hinges on a comprehensive understanding of the reasons behind their performance decline. Therefore, comprehending the degradation mechanism, which includes detrimental chemical and mechanical phenomena in the components of LIBs, is an essential step in resolving cycle life issues. The LIB systems presently being commercialized and developed predominantly employ graphite anode and layered oxide cathode materials. A significant portion of the degradation process in LIB systems takes place during the electrochemical reactions involving these electrodes. In this review, we explore and organize the aging mechanisms of LIBs, especially those with graphite anodes and layered oxide cathodes.

Keywords

Acknowledgement

This work was supported by the Technology Innovation Program (No. 20024249, 'Development of mass manufacturing technology for high performance lithium iron phosphate composites') funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2022R1A2B5B02002624).

References

  1. W. Lee, J. Kim, S. Yun, W. Choi, H. Kim, and W.-S. Yoon, Energy Environ. Sci., 2020, 13(12), 4406-4449.
  2. T. Nagaura and K. Tozawa, Progress in Batteries & Solar Cells, JEC Press, USA, 1990, 9, 209.
  3. M. Armand and J.-M. Tarascon, Nature, 2008, 451, 652-657. https://doi.org/10.1038/451652a
  4. J. B. Goodenough and Y. Kim, Chem. Mater., 2010, 22(3), 587-603. https://doi.org/10.1021/cm901452z
  5. P. Arora, R. E. White, and M. Doyle, J. Electrochem. Soc., 1998, 145(10), 3647-3667. https://doi.org/10.1149/1.1838857
  6. F. Friedrich, B. Strehle, A. T. S. Freiberg, K. Kleiner, S. J. Day, C. Erk, M. Piana, and H. A. Gasteiger, J. Electrochem. Soc., 2019, 166(15), A3760-A3774. https://doi.org/10.1149/2.0821915jes
  7. P. Peljo and H. H. Girault, Energy Environ. Sci., 2018, 11(9), 2306-2309. https://doi.org/10.1039/C8EE01286E
  8. E. Peled, J. Electrochem. Soc., 1979, 126(12), 2047-2051. https://doi.org/10.1149/1.2128859
  9. R. Fong, U. von Sacken, and J. R. Dahn, J. Electrochem. Soc., 1990, 137(7), 2009-2013. https://doi.org/10.1149/1.2086855
  10. V. R. Rikka, S. R. Sahu, A. Chatterjee, P. V. Satyam, R. Prakash, M. S. R. Rao, R. Gopalan, and G. Sundararajan, J. Phys. Chem. C, 2018, 122(50), 28717-28726. https://doi.org/10.1021/acs.jpcc.8b09210
  11. R. Imhof and P. Novak, J. Electrochem. Soc., 1998, 145(4), 1081-1087. https://doi.org/10.1149/1.1838420
  12. P. M. Attia, S. Das, S. J. Harris, M. Z. Bazant, and W. C. Chueh, J. Electrochem. Soc., 2019, 166(4), E97-E106. https://doi.org/10.1149/2.0231904jes
  13. S. Das, P. M. Attia, W. C. Chueh, and M. Z. Bazant, J. Electrochem. Soc., 2019, 166, E107.
  14. P. Novak, F. Joho, M. Lanz, B. Rykart, J.-C. Panitz, D. Alliata, R. Kotz, and O. Haas, J. Power Sources, 2001, 97-98, 39-46. https://doi.org/10.1016/S0378-7753(01)00586-9
  15. D. Zhang, B. S. Haran, A. Durairajan, R. E. White, Y. Podrazhansky, and B. N. Popov, J. Power Sources, 2000, 91(2), 122-129. https://doi.org/10.1016/S0378-7753(00)00469-9
  16. C. R. Yang, J. Y. Song, Y. Y. Wang, and C. C. Wan, J. Appl. Electrochem., 2000, 30(1), 29-34. https://doi.org/10.1023/A:1003592721146
  17. A. J. Smith, J. C. Burns, X. Zhao, D. Xiong, and J. R. Dahn, J. Electrochem. Soc., 2011, 158(5), A447-A452. https://doi.org/10.1149/1.3557892
  18. D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, Electrochim. Acta, 1999, 45(1-2), 67-86. https://doi.org/10.1016/S0013-4686(99)00194-2
  19. R. Yazami, Electrochim. Acta, 1999, 45(1-2), 87-97. https://doi.org/10.1016/S0013-4686(99)00195-4
  20. X.-G. Yang, Y. Leng, G. Zhang, S. Ge, and C.-Y. Wang, J. Power Sources, 2017, 360, 28-40.
  21. P. Ramadass, B. Haran, R. White, and B. N. Popov, J. Power Sources, 2002, 112(2), 606-613. https://doi.org/10.1016/S0378-7753(02)00474-3
  22. A. M. Andersson, K. Edstrom, and J. O. Thomas, J. Power Sources, 1999, 81-82, 8-12. https://doi.org/10.1016/S0378-7753(99)00185-8
  23. M. N. Richard and J. R. Dahn, J. Electrochem. Soc., 1999, 146(6), 2068-2077. https://doi.org/10.1149/1.1391893
  24. M. Broussely, Ph. Biensan, F. Bonhomme, Ph. Blanchard, S. Herreyre, K. Nechev, and R. J. Staniewicz, J. Power Sources, 2005, 146(1-2), 90-96. https://doi.org/10.1016/j.jpowsour.2005.03.172
  25. T. Yoshida, M. Takahashi, S. Morikawa, C. Ihara, H. Katsukawa, T. Shiratsuchi, and J. Yamaki, J. Electrochem. Soc., 2006, 153, A576.
  26. A. M. Andersson and K. Edstrom, J. Electrochem. Soc., 2001, 148, A1100.
  27. A. M. Andersson, M. Herstedt, A. G. Bishop, and K. Edstrom, Electrochim. Acta, 2002, 47(12), 1885-1898. https://doi.org/10.1016/S0013-4686(02)00044-0
  28. R. Yazami and Y. F. Reynier, Electrochim. Acta, 2002, 47(8), 1217-1223. https://doi.org/10.1016/S0013-4686(01)00827-1
  29. S. K. Heiskanen, J. Kim, and B. L. Lucht, Joule, 2019, 3, 2322-2333. https://doi.org/10.1016/j.joule.2019.08.018
  30. E. W. C. Spotte-Smith, R. L. Kam, D. Barter, X. Xie, T. Hou, S. Dwaraknath, S. M. Blau, and K. A. Persson, ACS Energy Lett., 2022, 7(4), 1446-1453. https://doi.org/10.1021/acsenergylett.2c00517
  31. S. Solchenbach, G. Hong, A. T. S. Freiberg, R. Jung, and H. A. Gasteiger, J. Electrochem. Soc., 2018, 165, A3304.
  32. T. Bond, J. Zhou, and J. Cutler, J. Electrochem. Soc., 2017, 164(1), A6158-A6162. https://doi.org/10.1149/2.0241701jes
  33. M.-H. Ryou, J.-N. Lee, D. J. Lee, W.-K. Kim, Y. K. Jeong, J. W. Choi, J.-K. Park, and Y. M. Lee, Electrochim. Acta, 2012, 83, 259-263.
  34. H. Park, T. Yoon, J. Mun, J. H. Ryu, J. J. Kim, and S. M. Oh, J. Electrochem. Soc., 2013, 160(9), A1539-A1543. https://doi.org/10.1149/2.095309jes
  35. T. Feng, Y. Xu, Z. Zhang, X. Du, X. Sun, L. Xiong, R. Rodriguez, and R. Holze, ACS Appl. Mater. Interfaces, 2016, 8(10), 6512-6519. https://doi.org/10.1021/acsami.6b00231
  36. J. Seo, S. Hyun, J. Moon, J. Y. Lee, and C. Kim, ACS Appl. Energy Mater., 2022, 5(5), 5610-5616. https://doi.org/10.1021/acsaem.1c03871
  37. H. Ota, Y. Sakata, A. Inoue, and S. Yamaguchi, J. Electrochem. Soc., 2004, 151(10), A1659.
  38. V. A. Agubra and J. W. Fergus, J. Power Sources, 2014, 268, 153-162. https://doi.org/10.1016/j.jpowsour.2014.06.024
  39. J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, and D. Bresser, Sustain. Energy Fuels, 2020, 4(11), 5387-5416.
  40. E. M. Gavilan-Arriazu, J. M. Humoller, O. A. Pinto, B. A. Lopez de Mishima, E. P. M. Leiva, and O. A. Oviedo, Phys. Chem. Chem. Phys., 2020, 22(28), 16174-16183. https://doi.org/10.1039/D0CP01886D
  41. D. Allart, M. Montaru, and H. Gualous, J. Electrochem. Soc., 2018, 165(2), A380-A387. https://doi.org/10.1149/2.1251802jes
  42. C. Didier, W. K. Pang, Z. Guo, S. Schmid, V. K. Peterson, Chem. Mater., 2020, 32(6), 2518-2531. https://doi.org/10.1021/acs.chemmater.9b05145
  43. N. Lin, Z. Jia, Z. Wang, H. Zhao, G. Ai, X. Song, Y. Bai, V. Battaglia, C. Sun, J. Qiao, K. Wu, and G. Liu, J. Power Sources, 2017, 365, 235-239. https://doi.org/10.1016/j.jpowsour.2017.08.045
  44. R. Grantab and V. B. Shenoy, J. Electrochem. Soc., 2011, 158(8), A948.
  45. D. Liu, Y. Wang, Y. Xie, L. He, J. Chen, K. Wu, R. Xu, and Y. Gao, J. Power Sources, 2013, 232, 29-33. https://doi.org/10.1016/j.jpowsour.2012.12.110
  46. F. Pistorio, D. Clerici, F. Mocera, and A. Soma, Energies, 2022, 15(23), 9168.
  47. S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood, Carbon, 2016, 105, 52-76. https://doi.org/10.1016/j.carbon.2016.04.008
  48. J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, J. Power Sources, 1995, 54(2), 228-231. https://doi.org/10.1016/0378-7753(94)02073-C
  49. T. Abe, H. Fukuda, Y. Iriyama, and Z. Ogumi, J. Electrochem. Soc., 2004, 151(8), A1120.
  50. S. Bhattacharya, A. R. Riahi, A. T. Alpas, J. Power Sources, 2011, 196(20), 8719-8727.
  51. D. Aurbach, E. Zinigrad, Y. Cohen, and H. Teller, Solid State Ion, 2002, 148(3-4), 405-416. https://doi.org/10.1016/S0167-2738(02)00080-2
  52. Y. Li, Y. Lu, P. Adelhelm, M.-M. Titirici, and Y.-S. Hu, Chem. Soc. Rev., 2019, 48(17), 4655-4687. https://doi.org/10.1039/C9CS00162J
  53. M. Inaba, Z. Siroma, Y. Kawatate, A. Funabiki, and Z. Ogumi, J. Power Sources, 1997, 68(2), 221-226. https://doi.org/10.1016/S0378-7753(96)02555-4
  54. M. E. Spahr, T. Palladino, H. Wilhelm, A. Wursig, D. Goers, H. Buqa, M. Holzapfel, and P. Novak, J. Electrochem. Soc., 2004, 151(9), A1383.
  55. J. Zhou, K. Ma, X. Lian, Q. Shi, J. Wang, Z. Chen, L. Guo, Y. Liu, A. Bachmatiuk, J. Sun, R. Yang, J.-H. Choi, and M. H. Rummeli, Small, 2022, 18(15), 2107460.
  56. M. R. Wagner, J. H. Albering, K.-C. Moeller, J. O. Besenhard, and M. Winter, Electrochem. Commun., 2005, 7(9), 947-952. https://doi.org/10.1016/j.elecom.2005.06.009
  57. H. Buqa, A. Wursig, J. Vetter, M. E. Spahr, F. Krumeich, and P. Novak, J. Power Sources, 2006, 153(2), 385-390. https://doi.org/10.1016/j.jpowsour.2005.05.036
  58. J. Gao, L. J. Fu, H. P. Zhang, T. Zhang, Y. P. Wu, and H. Q. Wu, Electrochem. Commun., 2006, 8(11), 1726-1730. https://doi.org/10.1016/j.elecom.2006.08.011
  59. S. Bhattacharya, A. R. Riahi, and A. T. Alpas, Carbon, 2014, 77, 99-112. https://doi.org/10.1016/j.carbon.2014.05.011
  60. J. C. Burns, D. A. Stevens, and J. R. Dahn, J. Electrochem. Soc., 2015, 162(6), A959-A964. https://doi.org/10.1149/2.0621506jes
  61. T. Waldmann, B.-I. Hogg, M. Kasper, S. Grolleau, C. G. Couceiro, K. Trad, B. P. Matadi, and M. Wohlfahrt-Mehrens, J. Electrochem. Soc., 2016, 163(7), A1232-A1238. https://doi.org/10.1149/2.0591607jes
  62. X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, Chem. Rev., 2017, 117(15), 10403-10473. https://doi.org/10.1021/acs.chemrev.7b00115
  63. N. Kim, S. Chae, J. Ma, M. Ko, and J. Cho, Nat. Commun., 2017, 8, 812.
  64. M. Fleischhammer, T. Waldmann, G. Bisle, B.-I. Hogg, M. Wohlfahrt-Mehrens, J. Power Sources, 2015, 274, 432-439. https://doi.org/10.1016/j.jpowsour.2014.08.135
  65. M. Petzl, M. Kasper, and M. A. Danzer, J. Power Sources, 2015, 275, 799-807.
  66. Y. Chen, L. Torres-Castro, K.-H. Chen, D. Penley, J. Lamb, M. Karulkar, and N. P. Dasgupta, J. Power Sources, 2022, 539, 231601.
  67. C. Uhlmann, J. Illig, M. Ender, R. Schuster, and E. Ivers-Tiffee, J. Power Sources, 2015, 279, 428-438. https://doi.org/10.1016/j.jpowsour.2015.01.046
  68. U. Janakiraman, T. R. Garrick, and M. E. Fortier, J. Electrochem. Soc., 2020, 167(16), 160552.
  69. J. Cannarella and C. B. Arnold, J. Electrochem. Soc., 2015, 162(7), A1365-A1373. https://doi.org/10.1149/2.1051507jes
  70. J. Kim, W. Lee, J. Seok, S. Park, J. K. Yoon, S.-B. Yoon, and W.-S. Yoon, Cell Rep. Phys. Sci., 2023, 4(4), 101331.
  71. R. B. Smith, E. Khoo, and M. Z. Bazant, J. Phys. Chem. C, 2017, 121(23), 12505-12523. https://doi.org/10.1021/acs.jpcc.7b00185
  72. M. Z. Bazant, Acc. Chem. Res., 2013, 46(5), 1144-1160. https://doi.org/10.1021/ar300145c
  73. S. J. Harris, A. Timmons, D. R. Baker, and C. Monroe, Chem. Phys. Lett., 2010, 485(4-6), 265-274. https://doi.org/10.1016/j.cplett.2009.12.033
  74. T. Gao, Y. Han, D. Fraggedakis, S. Das, T. Zhou, C.-N. Yeh, S. Xu, W. C. Chueh, J. Li, and M. Z. Bazant, Joule, 2021, 5(2), 393-414. https://doi.org/10.1016/j.joule.2020.12.020
  75. D. Juarez-Robles, A. A. Vyas, C. Fear, J. A. Jeevarajan, and P. P. Mukherjee, J. Electrochem. Soc., 2020, 167(9), 090547.
  76. X. Lin, K. Khosravinia, X. Hu, J. Li, and W. Lu, Prog. Energy Combust. Sci., 2021, 87, 100953.
  77. P. P. Paul, V. Thampy, C. Cao, H.-G. Steinruck, T. R. Tanim, A. R. Dunlop, E. J. Dufek, S. E. Trask, A. N. Jansen, M. F. Toney, and J. N. Weker, Energy Environ. Sci., 2021, 14(9), 4979-4988. https://doi.org/10.1039/D1EE01216A
  78. M. Petzl and M. A. Danzer, J. Power Sources, 2014, 254, 80-87. https://doi.org/10.1016/j.jpowsour.2013.12.060
  79. S.-B. Son, S. Trask, Y. Tsai, S. Lopykinski, M. Kim, and I. Bloom, J. Electrochem. Soc., 2022, 169(6), 060506.
  80. J. Vetter, P. Novak, M. R. Wagner, C. Veit, K.-C. Moller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, and A. Hammouche, J. Power Sources, 2005, 147(1-2), 269-281. https://doi.org/10.1016/j.jpowsour.2005.01.006
  81. A. B. Gunnarsdottir, C. V. Amanchukwu, S. Menkin, and C. P. Grey, J. Am. Chem. Soc., 2020, 142(49), 20814-20827. https://doi.org/10.1021/jacs.0c10258
  82. V. Agubra and J. Fergus, Materials, 2013, 6(4), 1310-1325. https://doi.org/10.3390/ma6041310
  83. J. Noh, W. Chen, P. Wu, Y. Huang, J. Tan, H. Zhou, and C. Yu, Adv. Funct. Mater., 2021, 31(43), 2104899.
  84. Y. Lu, Z. Tu, and L. A. Archer, Nat. Mater., 2014, 13, 961-969. https://doi.org/10.1038/nmat4041
  85. X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He, Energy Storage Mater., 2018, 10, 246-267.
  86. W. Mai, A. M. Colclasure, and K. Smith, J. Electrochem. Soc., 2020, 167(8), 080517.
  87. A. M. Colclasure, A. R. Dunlop, S. E. Trask, B. J. Polzin, A. N. Jansen, and K. Smith, J. Electrochem. Soc., 2019, 166(8), A1412-A1424. https://doi.org/10.1149/2.0451908jes
  88. B. Heidrich, M. Stamm, O. Fromm, J. Kauling, M. Borner, M. Winter, and P. Niehoff, J. Electrochem. Soc., 2023, 170(1), 010530.
  89. Sungjemmenla, V. S. K., C. B. Soni, V. Kumar, and Z. W. Seh, Energy Technol., 2022, 10(9), 2200421.
  90. N. Zhang, B. Wang, F. Jin, Y. Chen, Y. Jiang, C. Bao, J. Tian, J. Wang, R. Xu, Y. Li, et al., Cell Rep. Phys. Sci., 2022, 3(12), 101197.
  91. D. Li, H. Li, D. Danilov, L. Gao, J. Zhou, R.-A. Eichel, Y. Yang, and P. H. L. Notten, J. Power Sources, 2018, 396, 444-452. https://doi.org/10.1016/j.jpowsour.2018.06.035
  92. K. Edstrom, T. Gustafsson, and J. O. Thomas, Electrochim. Acta, 2004, 50(2-3), 397-403. https://doi.org/10.1016/j.electacta.2004.03.049
  93. J.-N. Zhang, Q. Li, Y. Wang, J. Zheng, X. Yu, and H. Li, Energy Storage Mater., 2018, 14, 1-7.
  94. K. Xu, Chem. Rev., 2014, 114(23), 11503-11618. https://doi.org/10.1021/cr500003w
  95. N. Dupre, J.-F. Martin, J. Oliveri, P. Soudan, D. Guyomard, A. Yamada, and R. Kanno, J. Electrochem. Soc., 2009, 156(5), C180.
  96. Y. Wang, X. Guo, S. Greenbaum, J. Liu, and K. Amine, Electrochem. Solid-State Lett., 2001, 4(6), A68.
  97. K. Amine, C. H. Chen, J. Liu, M. Hammond, A. Jansen, D. Dees, I. Bloom, D. Vissers, and G. Henriksen, J. Power Sources, 2001, 97-98, 684-687. https://doi.org/10.1016/S0378-7753(01)00701-7
  98. C. H. Chen, J. Liu, and K. Amine, J. Power Sources, 2001, 96(2), 321-328. https://doi.org/10.1016/S0378-7753(00)00666-2
  99. X. Cao, Y. Xu, L. Zhang, M. H. Engelhard, L. Zhong, X. Ren, H. Jia, B. Liu, C. Niu, B. E. Matthews, H. Wu, B. W. Arey, C. Wang, J.-G. Zhang, and W. Xu, ACS Energy Lett., 2019, 4(10), 2529-2534. https://doi.org/10.1021/acsenergylett.9b01926
  100. X. Shangguan, G. Xu, Z. Cui, Q. Wang, X. Du, K. Chen, S. Huang, G. Jia, F. Li, X. Wang, D. Lu, S. Dong, and G. Cui, Small, 2019, 15(16), 1900269.
  101. M. Gauthier, T. J. Carney, A. Grimaud, L. Giordano, N. Pour, H.-H. Chang, D. P. Fenning, S. F. Lux, O. Paschos, C. Bauer, F. Maglia, S. Lupart, P. Lamp, and Y. ShaoHorn, J. Phys. Chem. Lett., 2015, 6(22), 4653-4672. https://doi.org/10.1021/acs.jpclett.5b01727
  102. O. Haik, N. Leifer, Z. Samuk-Fromovich, E. Zinigrad, B. Markovsky, L. Larush, Y. Goffer, G. Goobes, and D. Aurbach, J. Electrochem. Soc., 2010, 157(10), A1099.
  103. T. Nohma, H. Kurokawa, M. Uehara, M. Takahashi, K. Nishio, and T. Saito, J. Power Sources, 1995, 54(2), 522-524. https://doi.org/10.1016/0378-7753(94)02140-X
  104. H.-K. Kim, T.-Y. Seong, W. Cho, and Y. S. Yoon, J. Power Sources, 2002, 109(1), 178-183. https://doi.org/10.1016/S0378-7753(02)00046-0
  105. G. V. Zhuang, G. Chen, J. Shim, X. Song, P. N. Ross, and T. J. Richardson, J. Power Sources, 2004, 134(2), 293-297. https://doi.org/10.1016/j.jpowsour.2004.02.030
  106. Z. Wang, X. Huang, and L. Chen, J. Electrochem. Soc., 2003, 150(2), A199-A208. https://doi.org/10.1149/1.1532326
  107. Z. Wang, Y. Sun, L. Chen, and X. Huang, J. Electrochem. Soc., 2004, 151(6), A914.
  108. Z. Wang, X. Huang, and L. Chen, J. Electrochem. Soc., 2004, 151(10), A1641.
  109. M. Balasubramanian, H. S. Lee, X. Sun, X. Q. Yang, A. R. Moodenbaugh, J. McBreen, D. A. Fischer, and Z. Fu, Electrochem. Solid-State Lett., 2002, 5(1), A22.
  110. J. K. Papp, N. Li, L. A. Kaufman, A. J. Naylor, R. Younesi, W. Tong, and B. D. McCloskey, Electrochim. Acta, 2021, 368, 137505.
  111. N. Liu, H. Li, Z. Wang, X. Huang, and L. Chen, Electrochem. Solid-State Lett., 2006, 9(7), A328.
  112. D. Aurbach, B. Markovsky, G. Salitra, E. Markevich, Y. Talyossef, M. Koltypin, L. Nazar, B. Ellis, and D. Kovacheva, J. Power Sources, 2007, 165(2), 491-499. https://doi.org/10.1016/j.jpowsour.2006.10.025
  113. S. R. Li, C. H. Chen, X. Xia, and J. R. Dahn, J. Electrochem. Soc., 2013, 160(9), A1524-A1528. https://doi.org/10.1149/2.051309jes
  114. N. S. Norberg, S. F. Lux, and R. Kostecki, Electrochem. Commun., 2013, 34, 29-32.
  115. D. J. Xiong, R. Petibon, M. Nie, L. Ma, J. Xia, and J. R. Dahn, J. Electrochem. Soc., 2016, 163(3), A546- A551. https://doi.org/10.1149/2.0951603jes
  116. B. Markovsky, A. Rodkin, Y. S. Cohen, O. Palchik, E. Levi, D. Aurbach, H.-J. Kim, and M. Schmidt, J. Power Sources, 2003, 119-121, 504-510. https://doi.org/10.1016/S0378-7753(03)00274-X
  117. A. von Cresce and K. Xu, J. Electrochem. Soc., 2011, 158(3), A337.
  118. S. R. Li, N. N. Sinha, C. H. Chen, K. Xu, and J. R. Dahn, J. Electrochem. Soc., 2013, 160(11), A2014-A2020. https://doi.org/10.1149/2.048311jes
  119. L. Yang, B. Ravdel, and B. L. Lucht, Electrochem. Solid-State Lett., 2010, 13(8), A95.
  120. D. Sun, Q. Wang, J. Zhou, Y. Lyu, Y. Liu, and B. Guo, J. Electrochem. Soc., 2018, 165(10), A2032-A2036. https://doi.org/10.1149/2.0211810jes
  121. L. Li, D. Wang, G. Xu, Q. Zhou, J. Ma, J. Zhang, A. Du, Z. Cui, X. Zhou, and G. Cui, J. Energy Chem., 2022, 65, 280-292. https://doi.org/10.1016/j.jechem.2021.05.049
  122. H. Wang, X. Li, F. Li, X. Liu, S. Yang, and J. Ma, Electrochem. Commun., 2021, 122, 106870.
  123. D.-S. Ko, J.-H. Park, S. Park, Y. N. Ham, S. J. Ahn, J.-H. Park, H. N. Han, E. Lee, W. S. Jeon, and C. Jung, Nano Energy, 2019, 56, 434-442. https://doi.org/10.1016/j.nanoen.2018.11.046
  124. R. J. Gummow, A. de Kock, and M. M. Thackeray, Solid State Ion., 1994, 69(1), 59-67. https://doi.org/10.1016/0167-2738(94)90450-2
  125. M. M. Thackeray, Y. Shao-Horn, A. J. Kahaian, K. D. Kepler, E. Skinner, J. T. Vaughery, and S. A. Hackney, Electrochem. Solid-State Lett., 1998, 1(1), 7.
  126. T. Aoshima, K. Okahara, C. Kiyohara, and K. Shizuka, J. Power Sources, 2001, 97-98, 377-380. https://doi.org/10.1016/S0378-7753(01)00551-1
  127. C. Zhan, J. Lu, A. J. Kropf, T. Wu, A. N. Jansen, Y.-K. Sun, X. Qiu, and K. Amine, Nat. Commun., 2013, 4(1), 2437.
  128. I. A. Shkrob, A. J. Kropf, T. W. Marin, Y. Li, O. G. Poluektov, J. Niklas, and D. P. Abraham, J. Phys. Chem. C, 2014, 118(42), 24335-24348. https://doi.org/10.1021/jp507833u
  129. D. R. Gallus, R. Schmitz, R. Wagner, B. Hoffmann, S. Nowak, I. Cekic-Laskovic, R. W. Schmitz, and M. Winter, Electrochim. Acta, 2014, 134, 393-398. https://doi.org/10.1016/j.electacta.2014.04.091
  130. I. Buchberger, S. Seidlmayer, A. Pokharel, M. Piana, J. Hattendorff, P. Kudejova, R. Gilles, and H. A. Gasteiger, J. Electrochem. Soc., 2015, 162(14), A2737-A2746. https://doi.org/10.1149/2.0721514jes
  131. D. Aurbach, B. Markovsky, A. Rodkin, E. Levi, Y. S. Cohen, H.-J. Kim, and M. Schmidt, Electrochim. Acta, 2002, 47(27), 4291-4306. https://doi.org/10.1016/S0013-4686(02)00417-6
  132. G. Amatucci, J. M. Tarascon, and L. C. Klein, Solid State Ion., 1996, 83(1-2), 167-173. https://doi.org/10.1016/0167-2738(95)00231-6
  133. D. Aurbach, M. D. Levi, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U. Heider, L. Heider, and R. Oesten, J. Power Sources, 1999, 81-82, 472-479. https://doi.org/10.1016/S0378-7753(99)00204-9
  134. C. Zhan, T. Wu, J. Lu, and K. Amine, Energy Environ. Sci., 2018, 11(2), 243-257. https://doi.org/10.1039/C7EE03122J
  135. M. Ochida, Y. Domi, T. Doi, S. Tsubouchi, H. Nakagawa, T. Yamanaka, T. Abe, and Z. Ogumi, J. Electrochem. Soc., 2012, 159(7), A961-A966. https://doi.org/10.1149/2.031207jes
  136. A. du Pasquier, A. Blyr, A. Cressent, C. Lenain, G. Amatucci, and J. M. Tarascon, J. Power Sources, 1999, 81-82, 54-59. https://doi.org/10.1016/S0378-7753(99)00136-6
  137. Y. Tesfamhret, R. Younesi, and E. J. Berg, J. Electrochem. Soc., 2022, 169(1), 010530.
  138. S. Jurng, S. K. Heiskanen, K. W. D. K. Chandrasiri, M. Y. Abeywardana, and B. L. Lucht, J. Electrochem. Soc., 2019, 166(13), A2721-A2726. https://doi.org/10.1149/2.0101913jes
  139. B.-J. Chae, Y. E. Jung, C. Y. Lee, and T. Yim, ACS Sustain. Chem. Eng., 2018, 6(7), 8547-8553. https://doi.org/10.1021/acssuschemeng.8b00867
  140. R. Jung, M. Metzger, F. Maglia, C. Stinner, and H. A. Gasteiger, J. Electrochem. Soc., 2017, 164(7), A1361-A1377. https://doi.org/10.1149/2.0021707jes
  141. R. Jung, P. Strobl, F. Maglia, C. Stinner, and H. A. Gasteiger, J. Electrochem. Soc., 2018, 165(11), A2869-A2879. https://doi.org/10.1149/2.1261811jes
  142. W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, Angew. Chem. Int. Ed., 2015, 54(15), 4440-4457. https://doi.org/10.1002/anie.201409262
  143. J. B. Goodenough and K.-S. Park, J. Am. Chem. Soc., 2013, 135(4), 1167-1176. https://doi.org/10.1021/ja3091438
  144. W.-S. Yoon, K.-B. Kim, M.-G. Kim, M.-K. Lee, H.-J. Shin, J.-M. Lee, J.-S. Lee, and C.-H. Yo, J. Phys. Chem. B, 2002, 106(10), 2526-2532.
  145. C.-H. Chen, B.-J. Hwang, C.-Y. Chen, S.-K. Hu, J.-M. Chen, H.-S. Sheu, and J.-F. Lee, J. Power Sources, 2007, 174(2), 938-943. https://doi.org/10.1016/j.jpowsour.2007.06.083
  146. D. Ensling, G. Cherkashinin, S. Schmid, S. Bhuvaneswari, A. Thissen, and W. Jaegermann, Chem. Mater., 2014, 26(13), 3948-3956. https://doi.org/10.1021/cm501480b
  147. A. M. Kannan, L. Rabenberg, and A. Manthiram, Electrochem. Solid-State Lett., 2003, 6(1), A16-A18. https://doi.org/10.1149/1.1526782
  148. J. Wandt, A. T. S. Freiberg, A. Ogrodnik, and H. A. Gasteiger, Mater. Today, 2018, 21(8), 825-833. https://doi.org/10.1016/j.mattod.2018.03.037
  149. S. S. Zhang, Energy Storage Mater., 2020, 24, 247-254.
  150. X. Zheng, Z. Cai, J. Sun, J. He, W. Rao, J. Wang, Y. Zhang, Q. Gao, B. Han, K. Xia, R. Sun, and C. Zhou, J. Energy Storage, 2023, 58, 106405.
  151. H.-J. Noh, S. Youn, C. S. Yoon, and Y.-K. Sun, J. Power Sources, 2013, 233, 121-130. https://doi.org/10.1016/j.jpowsour.2013.01.063
  152. I. Belharouak, W. Lu, D. Vissers, and K. Amine, Electrochem. Commun., 2006, 8(2), 329-335. https://doi.org/10.1016/j.elecom.2005.12.007
  153. H. Wang, E. Rus, T. Sakuraba, J. Kikuchi, Y. Kiya, and H. D. Abruna, Anal. Chem., 2014, 86(13), 6197-6201. https://doi.org/10.1021/ac403317d
  154. Y. Sun, H. Lu, and Y. Jin, Energy Fuels, 2021, 35(18), 15172-15184. https://doi.org/10.1021/acs.energyfuels.1c02308
  155. Q. Li, Q. Liang, H. Zhang, S. Jiao, Z. Zhuo, J. Wang, Q. Li, J.-N. Zhang, and X. Yu, Angew. Chem. Int. Ed., 2023, 62(5), e202215131.
  156. T. Ohsaki, T. Kishi, T. Kuboki, N. Takami, N. Shimura, Y. Sato, M. Sekino, and A. Satoh, J. Power Sources, 2005, 146(1-2), 97-100. https://doi.org/10.1016/j.jpowsour.2005.03.105
  157. K.-W. Nam, S.-M. Bak, E. Hu, X. Yu, Y. Zhou, X. Wang, L. Wu, Y. Zhu, K.-Y. Chung, and X.-Q. Yang, Adv. Funct. Mater., 2013, 23(8), 1047-1063. https://doi.org/10.1002/adfm.201200693
  158. P. Xu, J. Li, N. Lei, F. Zhou, and C. Sun, Int. J. Energy Res., 2021, 45(14), 19985-20000. https://doi.org/10.1002/er.7072
  159. X. Liu, D. Ren, H. Hsu, X. Feng, G.-L. Xu, M. Zhuang, H. Gao, L. Lu, X. Han, Z. Chu, J. Li, X. He, K. Amine, and M. Ouyang, Joule, 2018, 2(10), 2047-2064. https://doi.org/10.1016/j.joule.2018.06.015
  160. Y. Li, X. Liu, L. Wang, X. Feng, D. Ren, Y. Wu, G. Xu, L. Lu, J. Hou, W. Zhang, et al., Nano Energy, 2021, 85, 105878.
  161. J. Kang and B. Han, ACS Appl. Mater. Interfaces, 2015, 7(21), 11599-11603.
  162. L. Wang, G. Liu, R. Wang, X. Wang, L. Wang, Z. Yao, C. Zhan, and J. Lu, Adv. Mater., 2023, 35(11), 2209483.
  163. J.-N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge, X. Huang, E. Hu, C. Ma, S. Li, R. Xiao, W. Yang, Y. Chu, Y. Liu, H. Yu, and X.-Q. Ya, Nat. Energy, 2019, 4(7), 594-603. https://doi.org/10.1038/s41560-019-0409-z
  164. K. Jia, J. Wang, J. Ma, Z. Liang, Z. Zhuang, G. Ji, R. Gao, Z. Piao, C. Li, G. Zhou, and H.-M. Cheng, Nano Lett., 2022, 22(20), 8372-8380.
  165. W. Lee, S. Muhammad, C. Sergey, H. Lee, J. Yoon, Y.-M. Kang, and W. Yoon, Angew. Chem. Int. Ed., 2020, 59(7), 2578-2605. https://doi.org/10.1002/anie.201902359
  166. S. Li, K. Li, J. Zheng, Q. Zhang, B. Wei, and X. Lu, J. Phys. Chem. Lett., 2019, 10(24), 7537-7546. https://doi.org/10.1021/acs.jpclett.9b02711
  167. J. Kikkawa, S. Terada, A. Gunji, T. Nagai, K. Kurashima, and K. Kimoto, J. Phys. Chem. C, 2015, 119(28), 15823-15830. https://doi.org/10.1021/acs.jpcc.5b02303
  168. M. D. Radin, S. Hy, M. Sina, C. Fang, H. Liu, J. Vinckeviciute, M. Zhang, M. S. Whittingham, Y. S. Meng, and A. V. der Ven, Adv. Energy Mater., 2017, 7(20), 1602888.
  169. H. Gabrisch, R. Yazami, B. Fultz, J. Electrochem. Soc., 2004, 151(6), A891.
  170. H. Wang, Y.-I. Jang, B. Huang, D. R. Sadoway, and Y.-M. Chiang, J. Electrochem. Soc., 1999, 146(2), 473-480. https://doi.org/10.1149/1.1391631
  171. S. Ahmed, M. Bianchini, A. Pokle, M. S. Munde, P. Hartmann, T. Brezesinski, A. Beyer, J. Janek, and K. Volz, Adv. Energy Mater., 2020, 10(25), 2001026.
  172. N. Yabuuchi, Y.-T. Kim, H. H. Li, and Y. Shao-Horn, Chem. Mater., 2008, 20(15), 4936-4951. https://doi.org/10.1021/cm800314d
  173. L. Wang, T. Maxisch, and G. Ceder, Chem. Mater., 2007, 19(3), 543-552. https://doi.org/10.1021/cm0620943
  174. J. Reed and G. Ceder, Chem. Rev., 2004, 104(10), 4513-4534. https://doi.org/10.1021/cr020733x
  175. Y. Xia, J. Zheng, C. Wang, and M. Gu, Nano Energy, 2018, 49, 434-452. https://doi.org/10.1016/j.nanoen.2018.04.062
  176. R. D. Shannon, Acta Cryst., 1976, A32(5), 751-767. https://doi.org/10.1107/S0567739476001551
  177. J. R. Dahn, E. W. Fuller, M. Obrovac, and U. von Sacken, Solid State Ion., 1994, 69(3-4), 265-270. https://doi.org/10.1016/0167-2738(94)90415-4
  178. S. Sharifi-Asl, J. Lu, K. Amine, and R. Shahbazian-Yassar, Adv. Energy Mater., 2019, 9(22), 1900551.
  179. F. Lin, I. M. Markus, D. Nordlund, T.-C. Weng, M. D. Asta, H. L. Xin, and M. M. Doeff, Nat. Commun., 2014, 5, 3529.
  180. C. Xu, K. Marker, J. Lee, A. Mahadevegowda, P. J. Reeves, S. J. Day, M. F. Groh, S. P. Emge, C. Ducati, B. L. Mehdi, C. C. Tang, and C. P. Gery, Nat. Mater., 2021, 20, 84-92. https://doi.org/10.1038/s41563-020-0767-8
  181. Z. Wang, Z. Wang, D. Xue, J. Zhao, X. Zhang, L. Geng, Y. Li, C. Du, J. Yao, X. Liu, et al., Nano Energy, 2023, 105, 108016.
  182. M. Yoon, Y. Dong, Y. Yoo, S. Myeong, J. Hwang, J. Kim, S.-H. Choi, J. Sung, S. J. Kang, J. Li, and J. Cho, Adv. Funct. Mater., 2020, 30(6), 1907903.
  183. A. Yano, M. Shikano, A. Ueda, H. Sakaebe, and Z. Ogumi, J. Electrochem. Soc., 2017, 164(1), A6116.
  184. N. Taguchi, T. Akita, H. Sakaebe, K. Tatsumi, and Z. Ogumi, J. Electrochem. Soc., 2013, 160(11), A2293.
  185. N. Taguchi, H. Sakaebe, K. Tatsumi, and T. Akita, e-Journal of Surface Science and Nanotechnology, 2015, 13, 284-288. https://doi.org/10.1380/ejssnt.2015.284
  186. F. Zhang, S. Lou, S. Li, Z. Yu, Q. Liu, A. Dai, C. Cao, M. F. Toney, M. Ge, X. Xiao, et al., Nat. Commun., 2020, 11, 3050.
  187. Z. Cui and A. Manthiram, Angew. Chem. Int. Ed., 2023, 62(43), e202307243.
  188. P. Hou, J. Yin, M. Ding, J. Huang, and X. Xu, Small, 2017, 13(45), 1701802.
  189. Y. Lee, M. G. Kim, J. Kim, Y. Kim, and J. Cho, J. Electrochem. Soc., 2005, 152(9), A1824.
  190. R.-C. Lee, J. Franklin, C. Tian, D. Nordlund, M. Doeff, and R. Kostecki, J. Power Sources, 2021, 498, 229885.
  191. S.-K. Jung, H. Gwon, J. Hong, K.-Y. Park, D.-H. Seo, H. Kim, J. Hyun, W. Yang, and K. Kang, Adv. Energy Mater., 2014, 4(1), 1300787.
  192. R. Weber, A. J. Louli, K. P. Plucknett, and J. R. Dahn, J. Electrochem. Soc., 2019, 166(10), A1779-A1784. https://doi.org/10.1149/2.0361910jes
  193. N. Phattharasupakun, M. M. E. Cormier, E. Lyle, E. Zsoldos, A. Liu, C. Geng, Y. Liu, H. Li, M. Sawangphruk, and J. R. Dahn, J. Electrochem. Soc., 2021, 168(9), 090535.
  194. Z. Zhao, C. Li, Z. Wen, Z. Yang, S. Lu, X. Zhang, S. Chen, B. Wu, F. Wu, and D. Mu, Chem. Eng. J., 2023, 461, 142093.
  195. D. Wang, C. Xin, M. Zhang, J. Bai, J. Zheng, R. Kou, J. Y. P. Ko, A. Huq, G. Zhong, C.-J. Sun, et al., Chem. Mater., 2019, 31(8), 2731-2740. https://doi.org/10.1021/acs.chemmater.8b04673
  196. H. H. Sun, U.-H. Kim, J.-H. Park, S.-W. Park, D.-H. Seo, A. Heller, C. B. Mullins, C. S. Yoon, and Y.-K. Sun, Nat. Commun., 2021, 12, 6552.
  197. M. Jiang, D. L. Danilov, R.-A. Eichel, and P. H. L. Notten, Adv. Energy Mater., 2021, 11(48), 2103005.
  198. W. Lee, D. Lee, Y. Kim, W. Choi, and W.-S. Yoon, J. Mater. Chem. A, 2020, 8(20), 10206-10216. https://doi.org/10.1039/D0TA01083A
  199. J. Breger, Y. S. Meng, Y. Hinuma, S. Kumar, K. Kang, Y. Shao-Horn, G. Ceder, and C. P. Grey, Chem. Mater., 2006, 18(20), 4768-4781. https://doi.org/10.1021/cm060886r
  200. W. Li, X. Liu, H. Celio, P. Smith, A. Dolocan, M. Chi, and A. Manthiram, Adv. Energy Mater., 2018, 8(15), 1703154.
  201. D. Wang, Q. Yan, M. Li, H. Gao, J. Tian, Z. Shan, N. Wang, J. Luo, M. Zhou, and Z. Chen, Nanoscale, 2021, 13(5), 2811-2819. https://doi.org/10.1039/D0NR08305D
  202. J. Kim and K. Amine, Electrochem. Commun., 2001, 3(2), 52-55. https://doi.org/10.1016/S1388-2481(00)00151-X
  203. Q. Gan, N. Qin, Z. Wang, Z. Li, Y. Zhu, Y. Li, S. Gu, H. Yuan, W. Luo, L. Lu, Z. Xu, and Z. Lu, ACS Appl. Energy Mater., 2020, 3(8), 7445-7455. https://doi.org/10.1021/acsaem.0c00859
  204. Q. Fan, K. Lin, S. Yang, S. Guan, J. Chen, S. Feng, J. Liu, L. Liu, J. Li, and Z. Shi, J. Power Sources, 2020, 477, 228745.
  205. R. Qian, Y. Liu, T. Cheng, P. Li, R. Chen, Y. Lyu, and B. Guo, ACS Appl. Mater. Interfaces, 2020, 12(12), 13813-13823. https://doi.org/10.1021/acsami.9b21264
  206. W. Lee, S. Muhammad, T. Kim, H. Kim, E. Lee, M. Jeong, S. Son, J.-H. Ryou, and W.-S. Yoon, Adv. Energy Mater., 2018, 8(4), 1701788.
  207. W. Lee, S. Lee, E. Lee, M. Choi, R. Thangavel, Y. Lee, and W.-S. Yoon, Energy Storage Mater., 2022, 44, 441-451.
  208. G. G. Amatucci, J. M. Tarascon, and L. C. Klein, J. Electrochem. Soc., 1996, 143(3), 1114-1123. https://doi.org/10.1149/1.1836594
  209. W. Li, J. Reimers, and J. Dahn, Solid State Ion., 1993, 67(1-2), 123-130.
  210. C. Hong, Q. Leng, J. Zhu, S. Zheng, H. He, Y. Li, R. Liu, J. Wan, and Y. Yang, J. Mater. Chem. A, 2020, 8(17), 8540-8547. https://doi.org/10.1039/D0TA00555J
  211. M. Menetrier, I. Saadoune, S. Levasseur, and C. Delmas, J. Mater. Chem., 1999, 9(5), 1135-1140. https://doi.org/10.1039/a900016j
  212. C. A. Marianetti, G. Kotliar, and G. Ceder, Nat. Mater., 2004, 3(9), 627-631. https://doi.org/10.1038/nmat1178
  213. R. Malik, A. Abdellahi, and G. Ceder, J. Electrochem. Soc., 2013, 160(5), A3179-A3197. https://doi.org/10.1149/2.029305jes
  214. Y. Orikasa, T. Maeda, Y. Koyama, H. Murayama, K. Fukuda, H. Tanida, H. Arai, E. Matsubara, Y. Uchimoto, and Z. Ogumi, Chem. Mater., 2013, 25(7), 1032-1039. https://doi.org/10.1021/cm303411t
  215. M. Wagemaker, A. V. D. Ven, D. Morgan, G. Ceder, F. M. Mulder, and G. J. Kearley, Chem. Phys., 2005, 317(2-3), 130-136. https://doi.org/10.1016/j.chemphys.2005.05.011
  216. Z. Chen and J. R. Dahn, Electrochim. Acta, 2004, 49(7), 1079-1090. https://doi.org/10.1016/j.electacta.2003.10.019
  217. H.-H. Ryu, K.-J. Park, C. S. Yoon, and Y.-K. Sun, Chem. Mater., 2018, 30(3), 1155-1163. https://doi.org/10.1021/acs.chemmater.7b05269
  218. C. S. Yoon, D.-W. Jun, S.-T. Myung, and Y.-K. Sun, ACS Energy Lett., 2017, 2(5), 1150-1155.
  219. H.-H. Ryu, G.-T. Park, C. S. Yoon, and Y.-K. Sun, J. Mater. Chem. A, 2019, 7(31), 18580-18588. https://doi.org/10.1039/C9TA06402H
  220. P. Yan, J. Zheng, M. Gu, J. Xiao, J.-G. Zhang, and C.-M. Wang, Nat. Commun., 2017, 8, 14101.
  221. H. Liu, M. Wolfman, K. Karki, Y.-S. Yu, E. A. Stach, J. Cabana, K. W. Chapman, and P. J. Chupas, Nano Lett., 2017, 17(6), 3452-3457.
  222. Y. Jiang, P. Yan, M. Yu, J. Li, H. Jiao, B. Zhou, and M. Sui, Nano Energy, 2020, 78, 105364.
  223. M. M. Besli, S. Xia, S. Kuppan, Y. Huang, M. Metzger, A. K. Shukla, G. Schneider, S. Hellstrom, J. Christensen, M. M. Doeff, and Y. Liu., Chem. Mater., 2019, 31(2), 491-501. https://doi.org/10.1021/acs.chemmater.8b04418
  224. S. Xia, L. Mu, Z. Xu, J. Wang, C. Wei, L. Liu, P. Pianetta, K. Zhao, X. Yu, F. Lin, and Y. Liu, Nano Energy, 2018, 53, 753-762.
  225. K.-J. Park, H.-G. Jung, L.-Y. Kuo, P. Kaghazchi, C. S. Yoon, and Y.-K. Sun, Adv. Energy Mater., 2018, 8(25), 1801202.
  226. T. T. Nguyen, U.-H. Kim, C. S. Yoon, and Y.-K. Sun, Chem. Eng. J., 2021, 405, 126887.
  227. J. Langdon and A. Manthiram, Energy Storage Mater., 2021, 37, 143-160.
  228. U.-H. Kim, E.-J. Lee, C. S. Yoon, S.-T. Myung, and Y.-K. Sun, Adv. Energy Mater., 2016, 6(22), 1601417.
  229. K.-J. Park, M.-J. Choi, F. Maglia, S.-J. Kim, K.-H. Kim, C. S. Yoon, and Y.-K. Sun, Adv. Energy Mater., 2018, 8(19), 1703612.