• Title/Summary/Keyword: Materials Characterization

Search Result 2,967, Processing Time 0.035 seconds

Characterization of O2 ionosorption induced potential changing property of SnO2 nanowire with Kelvin force microscopy (KFM)

  • Heo, Jinhee;Won, Soonho
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.359-362
    • /
    • 2012
  • We have employed Kelvin force microscopy (KFM) system to measure the potential change of a single SnO2 nanowire which had been synthesized on the Au thin film by a thermal process. By using the KFM probing technique, Rh coated conducting cantilever can approach a single SnO2 nanowire in nano scale and get the potential images with oscillating AC bias between Au electrode and cantilever. Also, during imaging the potential status, we controlled the concentration of oxygen in measuring chamber to change the ionosorption rate. From the results of such experiments, we verified that the surface potential as well as doping type of a single SnO2 nanowire could be changed by oxygen ionosorption.

Characterization of Lattice Thermal Conductivity in Semiconducting Materials (반도체 재료의 격자열전도도 분석)

  • Lim, Jong-Chan;Yang, Heesun;Kim, Hyun-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.61-65
    • /
    • 2020
  • Suppressing lattice thermal conductivity of thermoelectric materials is one of the most popular approach to improve their thermoelectric performance. However, accurate characterization of suppressed lattice thermal conductivity is challenging as it can only be acquired by subtracting other contributions to thermal conductivity from the total thermal conductivity. Here we explain that electronic thermal conductivity (for all materials) and bipolar thermal conductivity (for narrow band gap materials) need to be determined accurately first to characterize the lattice thermal conductivity accurately. Methods to calculate Lorenz number for electronic thermal conductivity (via single parabolic model and using a simple equation) and bipolar thermal conductivity (via two-band model) are introduced. Accurate characterization of the lattice thermal conductivity provides a powerful tool to accurately evaluate effect of different defect engineering strategies.

Fabrication and characterization of PCL/TCP-coated PHBV composite multilayer as a bone plate

  • Kim, Yang-Hee;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.39.2-39.2
    • /
    • 2009
  • In this work, Poly($\varepsilon$-Caprolactone)(PCL) andpoly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) mats were fabricated usingelectrospinning process. The electrospinning process is a simple and efficient method to fabricate the nanofibrous mats. PCL and PHBV is a kind of biodegradable polymer but their mechanical properties aren't good. For improving mechanical properties, PHBV mats were coated by TCP. Using PCL mats and TCP-coated PHBV composite mats, a bio-resorbablebone plate were made by pressing. Detailed micro-structural characterization was done by SEM techniques. Tensile strength and bending strength were also evaluated for mechanical properties. The cytotoxicity evaluation ofPCL/TCP-coated PHBV composite multilayer was done by MTT assay. The evidence obtained in this work implies the potential for use as a biodegradable boneplate.

  • PDF

Current Status of $SiC_{f}/SiC$ Composites Material in Fusion Reactor

  • Yoon, Han-Ki;Lee, Sang-Pill
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.166-171
    • /
    • 2007
  • The characterization of monolithic SiC and SiCf/SiC composite materials fabricated by NITE and RS processes was investigated in conjunction with the detailed analysis of their microstructure and density. The NITE-SiC based materials were fabricated, using a SiC powder with average size of 30 nm. RS- SiCf/SiC composites were fabricated with a complex slurry of C and SiC powder. In the RS process, the average size of starting SiC particle and the blending ratio of C/SiC powder were $0.4\;{\mu}m$ and 0.4, respectively. The reinforcing materials for /SiC composites were BN-SiC coated Hi-Nicalon SiC fiber, unidirectional or plain woven Tyranno SA SiC fiber. The characterization of all materials was examined by the means of SEM, EDS and three point bending test. The density of NITE-SiCf/SiC composite increased with increasing the pressure holding time. RS-SiCf/SiC composites represented a great decrease of flexural strength at the temperature of $1000\;^{\circ}C.$

  • PDF

Characterization of Silk Fibroin/S-carboxymethyl Kerateine Surfaces: Evaluation of Biocompatibility by Contact Angle Measurements

  • Lee, Kuen-Yong
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.71-74
    • /
    • 2001
  • Surface characterization of materials has been considered critical in the development of biomaterials, as many unfavorable responses from the body occur at the interface between a material and the body component. The contact angle measurement is one means to characterize the surface properties and to correlate them to the biocompatibility of materials. In this paper, surface characteristics of silk fibroin/S-carboxymethyl kerateine, representative fibrous proteins, were investigated by contact angle measurements of ESCA. The biocompatibility of the blends was evaluated based on minimal interfacial free energy concept, and compared with other potential biomaterials. It was also hypothesized that the enhanced surface polarity of the blends was generated from the conformational transition of proteins. This approach to evaluate the biocompatibility of materials based on surface characteristics may find wide utility in many biomedical applications.

  • PDF

Synthesis and Characterization of Metal (Pt, Pd and Fe)-graphene Composites

  • Chen, Ming-Liang;Park, Chong-Yeon;Choi, Jong-Geun;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.147-151
    • /
    • 2011
  • In this study, we prepared graphene by using the modified Hummers-Offeman method and then introduced the metals (Pt, Pd and Fe) for dispersion on the surface of the graphene for synthesis of metal-graphene composites. The characterization of the prepared graphene and metal-graphene composites was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and transmission electron microscopy (TEM). According to the results, it can be observed that the prepared graphene consists of thin stacked flakes of shapes having a well-defined multilayered structure at the edge. And the metal particles are dispersed uniformly on the surface of the graphene with an average particle size of 20 nm.

Electrical Characterization of Electronic Materials Using FIB-assisted Nanomanipulators

  • Roh, Jae-Hong;You, Yil-Hwan;Ahn, Jae-Pyeong;Hwang, Jinha
    • Applied Microscopy
    • /
    • v.42 no.4
    • /
    • pp.223-227
    • /
    • 2012
  • Focused Ion Beam (FIB) systems have incorporated versatile nanomanipulators with inherent sophisticated machining capability to characterize the electrical properties of highly miniature components of electronic devices. Carbon fibers were chosen as a model system to test the applicability of nanomanipulators to microscale electronic materials, with special emphasis on the direct current current-voltage characterizations in terms of electrode configuration. The presence of contact resistance affects the electrical characterization. This resistance originates from either i) the so-called "spreading resistance" due to the geometrical constriction near the electrode - material interface or ii) resistive surface layers. An appropriate electrode strategy is proposed herein for the use of FIB-based manipulators.

Characterization of Two-Dimensional Transition Metal Dichalcogenides in the Scanning Electron Microscope Using Energy Dispersive X-ray Spectrometry, Electron Backscatter Diffraction, and Atomic Force Microscopy

  • Lang, Christian;Hiscock, Matthew;Larsen, Kim;Moffat, Jonathan;Sundaram, Ravi
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.131-134
    • /
    • 2015
  • Here we show how by processing energy dispersive X-ray spectrometry (EDS) data obtained using highly sensitive, new generation EDS detectors in the AZtec LayerProbe software we can obtain data of sufficiently high quality to non-destructively measure the number of layers in two-dimensional (2D) $MoS_2$ and $MoS_2/WSe_2$ and thereby enable the characterization of working devices based on 2D materials. We compare the thickness measurements with EDS to results from atomic force microscopy measurements. We also show how we can use electron backscatter diffraction (EBSD) to address fabrication challenges of 2D materials. Results from EBSD analysis of individual flakes of exfoliated $MoS_2$ obtained using the Nordlys Nano detector are shown to aid a better understanding of the exfoliation process which is still widely used to produce 2D materials for research purposes.

Polarization Distortion and Compensation of Circularly Polarized Emission from Chiral Metasurfaces

  • Yeonsoo Lim;In Cheol Seo;Young Chul Jun
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.147-156
    • /
    • 2023
  • Circularly polarized (CP) emission can be achieved by integrating emissive materials into chiral metasurfaces. Such CP light sources in integrated device platforms are desirable for important potential applications. However, the exact characterization of the polarization state in CP emission may include some errors because of the unwanted polarization distortion caused by optical components (e.g., beam splitter) in the optical setup. Here, we consider CP emission measurements from chiral metasurfaces and characterize the polarization distortion caused by the beam splitter. We first detail the procedures for the Stokes parameters and Mueller matrix measurements. Then, we directly measure the Mueller matrix of the beam splitter and retrieve the original polarization state of CP emission from our metasurface sample. Using the measured Mueller matrix of the beam splitter, we specifically identify what contributes to polarization distortion in CP emission. Our work may provide useful guidelines for the characterization and compensation of polarization distortion in general Stokes parameter measurements.