DOI QR코드

DOI QR Code

Characterization of Lattice Thermal Conductivity in Semiconducting Materials

반도체 재료의 격자열전도도 분석

  • Lim, Jong-Chan (Department of Materials Science and Engineering, Hongik University) ;
  • Yang, Heesun (Department of Materials Science and Engineering, Hongik University) ;
  • Kim, Hyun-Sik (Department of Materials Science and Engineering, Hongik University)
  • 임종찬 (홍익대학교 신소재공학과) ;
  • 양희선 (홍익대학교 신소재공학과) ;
  • 김현식 (홍익대학교 신소재공학과)
  • Received : 2020.10.06
  • Accepted : 2020.12.03
  • Published : 2020.12.30

Abstract

Suppressing lattice thermal conductivity of thermoelectric materials is one of the most popular approach to improve their thermoelectric performance. However, accurate characterization of suppressed lattice thermal conductivity is challenging as it can only be acquired by subtracting other contributions to thermal conductivity from the total thermal conductivity. Here we explain that electronic thermal conductivity (for all materials) and bipolar thermal conductivity (for narrow band gap materials) need to be determined accurately first to characterize the lattice thermal conductivity accurately. Methods to calculate Lorenz number for electronic thermal conductivity (via single parabolic model and using a simple equation) and bipolar thermal conductivity (via two-band model) are introduced. Accurate characterization of the lattice thermal conductivity provides a powerful tool to accurately evaluate effect of different defect engineering strategies.

열전소재의 격자열전도도 저감은 열전성능 증대를 위해 가장 빈번하게 사용되는 방법이다. 하지만 전체 열전도도에서 다른 열전도도 기여분을 제외하는 방법으로만 격자열전도도를 구할 수 있기 때문에 격자열전도도를 정확하게 분석하는 것을 간단한 작업이 아니다. 본 연구에서는 먼저 전자/홀에 의한 열전도도 기여분 (모든 소재 적용)과 쌍극 전도에 의한 기여분 (작은 밴드 갭 소재 적용)을 정확하게 계산해야만 격자열전도도를 정확하게 분석할 수 있음을 설명한다. 전자/홀에 의한 기여분을 계산하기 위해 필수적인 로렌츠 숫자 계산법 (싱글 파라볼릭 모델링 및 간단한 식 이용)과 쌍극 전도에 의한 기여분 계산법 (투 밴드 모델링) 또한 소개한다. 격자열전도도의 정확한 분석은 격자열전도도 저감을 위한 여러 결함 제어 전략의 효과를 객관적으로 평가할 수 있는 강력한 분석 도구로 사용될 수 있다.

Keywords

References

  1. G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials", Nat. Mater., 7, 105 (2008). https://doi.org/10.1038/nmat2090
  2. J. Y. Hwang, Y.-N. Kim, and K. H. Lee, "Preparation of ntype Bi-Te-Se-based thermoelectric materials with improved reliability via hot extrusion process", J. Microelectron. Packag. Soc., 26(2), 45 (2019). https://doi.org/10.6117/KMEPS.2019.26.2.0045
  3. H.-S. Kim, N. A. Heinz, Z. M. Gibbs, Y. Tang, S. D. Kang, and G. J. Snyder, "High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control", Mater. Today, 20, 452 (2017). https://doi.org/10.1016/j.mattod.2017.02.007
  4. K. H. Lee, S.-i. Kim, H.-S. Kim, and S. W. Kim, "Band Convergence in Thermoelectric Materials: Theoretical Background and Consideration on Bi-Sb-Te Alloys", ACS Appl. Energy Mater., 3, 2214 (2020). https://doi.org/10.1021/acsaem.9b02131
  5. H.-S. Kim, "Effect of Density-of-States Effective Mass on Transport Properties of Two Converging Valence Bands", J. Korean Ceram. Soc., 56, 325 (2019). https://doi.org/10.4191/kcers.2019.56.3.12
  6. H.-S. Kim, H. M. Jeong, S.-M. Choi, and K. H. Lee, "Point defect engineering approaches to enhance the performance og thermoelectric materials", J. Microelectron. Packag. Soc., 26(4), 1 (2019).
  7. K. H. Lee, W. H. Shin, H.-S. Kim, K. Lee, J. W. Roh, J. Yoo, J.-i. Kim, S. W. Kim, and S.-i. Kim, "Synergetic effect of grain size reduction on electronic and thermal transport properties by selectively suppressed minority carrier mobility and enhanced boundary scattering in Bi0.5Sb1.5Te3 alloys", Scr. Mater., 160, 15 (2019). https://doi.org/10.1016/j.scriptamat.2018.09.038
  8. W. H. Shin, J. W. Roh, B. Ryu, H. J. Chang, H.-S. Kim, S. Lee, W. S. Seo, and K. Ahn, "Enhancing Thermoelectric Performances of Bismuth Antimony Telluride via Synergistic Combination of Multiscale Structuring and Band Alignment by FeTe2 Incorporation", ACS Appl. Mater. Interfaces, 10, 3689 (2018). https://doi.org/10.1021/acsami.7b18451
  9. H.-S. Kim, K. H. Lee, J. Yoo, J. Youn, J. W. Roh, S.-i. Kim, and S. W. Kim, "Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi0.48Sb1.52Te3", Materials, 10, 763 (2017). https://doi.org/10.3390/ma10070763
  10. A. F. May and G. J. Snyder, "Introduction to modeling thermoelectric transport at high temperatures", in Materials, Preparation, and Characterization in Thermoelectrics, D. M. Rowe Eds., pp.1-20 (Chapter 11), CRC Press, Boca Raton (2012).
  11. H.-S. Kim, Z. M. Gibbs, Y. Tang, and G. J. Snyder, "Characterization of Lorenz number with Seebeck coefficient measurement", APL Mater., 3, 041506 (2015). https://doi.org/10.1063/1.4908244
  12. H.-S. Kim, K. H. Kee, J. Yoo, W. H. Shin, J. W. Roh, J.-Y. Hwang, S. W. Kim, and S.-i. Kim, "Suppression of bipolar conduction via bandgap engineering for enhanced thermoelectric performance of p-type Bi0.4Sb1.6Te3 alloys", J. Alloy. Compd., 741, 869 (2018). https://doi.org/10.1016/j.jallcom.2018.01.165
  13. H.-S. Kim, K. H. Kee, J. Yoo, J. Youn, J. W. Roh, S.-i. Kim, and S. W. Kim, "Effect of substitutional Pb doping on bipolar and lattice thermal conductivity in p-type Bi0.48Sb1.52Te3", J. Alloy. Compd., 10, 763 (2017).